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ABSTRACT 

Ocean colour remote sensing is becoming well-

established for the monitoring of coastal waters. 

However, validation of satellite-derived products 

remains problematic, as matchups of in situ data and 

cloud-free satellite data are costly and difficult to obtain 

with ship-based measurements. We present a validation 

of several MERIS algorithms for turbidity (T) and 

attenuation of photosynthetically active radiation 

(KPAR), using measurements from three autonomous 

buoys in coastal waters, two in the North Sea, and one 

in the Irish sea. In situ data were combined with marine 

reflectance spectra and level 2 products from multiple 

processing versions. The merged dataset contains 

several hundreds of matchups and allows for flexible 

testing of retrieval algorithms for T and KPAR. 

Autonomous systems prove to be powerful tools for 

validating satellite data in dynamic coastal waters, 

where changes occur quickly both in space and time. 

 

1. INTRODUCTION 

The collection of ship-borne data to validate remote 

sensing products is expensive, and gives a low number 

of matchups per year, even with dedicated campaigns. 

Optical instruments on autonomous platforms can 

provide many more matchups, typically one per cloud-

free image. For moderate resolution ocean colour 

sensors such as ENVISAT/MERIS (2002-2012) this 

means at least one matchup per cloud-free day at mid-

latitudes, giving tens of matchups per year and hundreds 

over the lifetime of the satellite. SmartBuoys [1] are an 

example of such autonomous buoys, and have been 

deployed by CEFAS for many years, some for over a 

decade. These buoys record several parameters multiple 

times per hour, with only short disruptions between 

deployments. Even though the SmartBuoys were not 

designed for satellite validation, they have been 

successfully used for that purpose [2] [3] [4]. Here we 

have put together a dataset of matching satellite and in 

situ data, for similar validation or algorithm testing. 

 

2. METHODS 

2.1 In situ data 

The buoys used in this study are located in UK coastal 

waters (Figure 1), at Warp Anchorage (WARP, approx. 

51.53°N, 1.03°E), West Gabbard (WGAB, approx. 

51.98°N, 2.08°E) and Liverpool Bay (LIVB, approx. 

53.53°N, 3.36°W). SmartBuoys collect measurements 

of salinity and temperature using various sensors, 

fluorescence with a Seapoint Fluorometer, and turbidity 

(T) with a Seapoint Turbidity Meter that emits a light at 

880 nm and has a wide acceptance angle of 15-150°. 

Downwelling photosynthetically active radiation (PAR) 

is measured with a LI-192 Underwater Quantum Sensor 

in the range 400-700 nm with a flat cosine collector, at 1 

and 2 m depth at LIVB and at 0
+
, 1, and 2 m depth at 

WARP and WGAB. The mean average from burst 

measurements of several minutes (usually 10) at 1 Hz is 

recorded every fifteen, twenty or thirty minutes 

(depending on deployment). After retrieval the data are 

post processed and quality controlled (details omitted). 

The PAR measurements can be used to estimate the 

diffuse attenuation coefficient of PAR (KPAR) at 1.5 m 

depth: 
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The in situ KPAR data is quality controlled using the 0
+
 

m PAR measurements with rejection of points where 

KPAR at 1.5 m differs more than 50% from KPAR at 0.5 

m. Data from LIVB is excluded as it lacks a 0
+
 m 

measurement. 

 

 
Figure 1 Location of the buoys on a composite of 2010 

MERIS R3 T-Nechad (681 nm) turbidity, see further. 
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2.2 Satellite data 

Level 2 data from three MERIS processing versions 

were used: MEGS7.4, the ‘second reprocessing’ [5], 

MEGS8.0, the ‘third reprocessing’ [6] and the SeaDAS 

R2012.1 processing [7], hereafter referred to as M7, M8 

and SD. For each scene covering a given buoy, marine 

reflectances and products were extracted from a 5x5 

pixel box (kernel) over the pixel closest to the buoy’s 

deployment location. Data were filtered using level 2 

quality flags (Table 1). The buoy pixel value and the 

number of valid pixels, the mean average, median and 

standard deviation in the kernel were stored. The 

satellite data is then matched with the closest available 

in situ data within one hour (usually less). 

 

MEGS l2_flags (CLOUD, HIGH_GLINT) + appropriate 

PCD 

SeaDAS l2_flags (CLOUD, HISUNGLINT, LOWLW, 

MAXAERITER, HILT, STLIGHT) + Rrs (413, 

443, 490) < 0, aot_865 < 0 

Table 1: Quality screening for MEGS and SeaDAS. 

 

2.3 Remote sensing algorithms 

Satellite products were calculated from the best quality 

matchups, i.e. with 25/25 valid pixels in the surrounding 

kernel. Matching satellite and in situ data were 

compared using an ordinary least squares log-log 

regression. The 50, 5 and 95 percentiles of prediction 

errors (PE), the root mean square error (RMSE) and the 

coefficient of variation (CV) of the RMSE (dividing the 

RMSE by the mean of the observations) are given. 

 

Two turbidity algorithms are compared over the three 

processing versions, T-Nechad [8] and T-Ouillion [9]. 

T-Nechad is a single band semi-empirical turbidity 

algorithm of the form: 
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The algorithm was recalibrated with 68 in situ 

measurements, details in Section 5.6.1 of [10]. A, C and 

B coefficients for the MERIS bands are given in Table 

2. The B offsets are small and represent measurement 

and model errors, and are not applied. The T-Ouillon 

algorithm was developed for tropical waters, but the 

relationship between w and turbidity (particulate side-

scattering at 860 nm) is not expected to vary much 

between water types. The proposed global algorithm is a 

switching algorithm; first a single band (681 nm) 

‘turbid’ water algorithm is calculated, using either the 

power law algorithm: 
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with coefficients C1=-6204217, C2=179652, C3=36.49 

and C4=0.452, or the polynomial algorithm, which the 

authors suggest for the more turbid waters: 

 
254.1

6813183 RrsT
poly     4 

 

Where the ‘turbid’ algorithm gives < 1 FTU the results 

are replaced with the three band ‘clear’ algorithm: 
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Two KPAR algorithms for MERIS were compared. The 

first, KPAR-Devlin, uses the empirical relationship found 

in UK coastal waters [11]: 

 

SPMgmmK
PAR

121
066.0325.0   6 

 

With SPM (suspended particulate matter, gm
-3

) 

calculated with a semi-empirical single band algorithm 

using the 681 nm band [12]. This algorithm has the 

same form as Equation 2 but is calibrated with SPM 

measurements (Table 3), details in Section 5.6.1 of [10]. 

 

Wavelength 

(nm) 

AT 

(FNU) 

CT 

(-) 

BT 

(FNU) 

560 89.0 0.1485 -0.28 

620 188.2 0.1533 -0.10 

665 296.8 0.1728 -0.22 

681 320.8 0.1792 -0.33 

708 451.8 0.1887 -0.22 

753 1283.0 0.1997 -0.24 

865 1264.7 0.2007 -0.25 

Table 2: T-Nechad coefficients for MERIS bands. 

 

Wavelength 

(nm) 

AT 

(g/m³) 

CT 

(-) 

BT 

(g/m³) 

560 87.6 0.1189 -0.25 

620 182.3 0.1533 -0.04 

665 285.6 0.1728 -0.14 

681 306.5 0.1792 -0.23 

708 435.5 0.1887 -0.14 

753 1270.3 0.1997 -0.22 

865 1248.0 0.2007 -0.22 

Table 3: SPM-Nechad coefficients for MERIS bands. 

 

The second KPAR algorithm is the semi-analytical 

algorithm from [13]. The inherent optical properties, 

a(490) and bb(490) required for this algorithm were 

derived using the Quasi Analytical Algorithm [14] 

(QAA). Since these are turbid coastal stations, the 665 

nm band was used as reference wavelength in the QAA. 

 

3. RESULTS AND DISCUSSION 

3.1 T-Nechad 

In general good correlation coefficients are found for T-
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Nechad, R² = 80–85%, with median prediction errors 

(PE50) of 17–25% (Figure 2). In these waters, the 665 

nm and 681 nm bands perform best, perhaps with a 

slightly better performance for the 681 nm band. For 

these two bands the R² is lowest for M7 and highest for 

SD. There is little difference in PE50 between the 

processing versions. An underestimation of low T points 

is found that increases with wavelength. In SD there is a 

flattening towards a detection limit of ~40 FTU 

(WARP). These points are flagged in M7 and M8. 

 

The RMSE increases from M7 to M8 to SD, as does the 

number of high T points. The RMSE of SD is also 

higher due to the detection limit mentioned above, as 

these high T points are (sometimes significantly) 

underestimated. When looking at the CV of the RMSE, 

all three processing versions perform similarly. M7 still 

has a lower RMSE(CV) than M8 and SD. Because of 

processor differences, the number of compared points in 

each plot is different; M7 has a lower number of 

matchups probably due to a more restrictive PCD_1_13 

flag. When restricting the comparison to points present 

in all three datasets (n=178), SD performs best as the 

badly performing high T points are excluded. 

 

3.2 T-Ouillon 

For the single band ‘turbid’ algorithms, Tpower and Tpoly 

good correlation coefficients are found (Figure 3), R² = 

75–83%, PE50 are higher than with T-Nechad: 27–31%. 

Regarding correlation and error statistics, the ‘clear’ 

algorithm performs similarly to the ‘turbid’ algorithms, 

albeit with a slope significantly lower than 1. Tpoly 

reaches a maximum at T ~23.5 FTU, corresponding to 

Rrs681 of ~0.02 sr
-1

. This saturation is clearly found at 

the WARP station, where Rrs681 is regularly greater 

than 0.02 sr
-1

, i.e. in slightly under 23% of the MERIS 

images with 25/25 valid pixels in the kernel around the 

station. Of the ‘turbid’ retrievals 35–54 points (~10%) 

are <1 FTU, and are thus replaced with the ‘clear’ 

algorithm in the merged product. This results in a 

significant reduction of scatter in the low T points, 

albeit with an ambiguous impact on correlation statistics 

and errors: some improve, some do not. 

 

3.3 Scatter in turbidity plots 

There is still considerable scatter in the comparisons 

between satellite and in situ data that is difficult to 

attribute to a single source. A large contribution to the 

scatter is probably caused by the discrepancy in 

sampling volumes between the in situ sensor - a few 

cm³ at one metre depth - and the satellite - integrated 

over 1 km² surface and the optical depth. In dynamic 

tidal systems like these, the characteristics of the 

measured volume can change on relatively short time 

scales. Therefore an additional more stringent quality 

check is applied: only matchups are included where: 

1) the coefficient of variation in the in situ burst 

measurement is <10%, excluding waters with 

patchy suspended sediment concentrations, and  

2) the time difference between in situ and satellite 

data is <10 minutes, excluding rapid temporal 

variations. 

This additional filtering shows a quite large reduction in 

scatter, coupled with an improvement on R², now 

ranging between 84–90% and 73–88% respectively for 

T-Nechad (Figure 4) and T-Ouillon (not shown). 

Overall, PE50 are lower by a few percent. It is noted 

that the criterion on the in situ data results in the 

strongest reduction of the scatter (not shown separately), 

likely because the integrated value over the satellite 

pixel changes much less rapidly than the small volume 

of water seen by the buoy sensor. 

 

3.4 K
PAR

 

It is clearly illustrated by the KPAR-Devlin algorithm that 

in these waters KPAR is dominated by SPM (Figure 5). 

Correlation (R² respectively 78–87% and 73–85%) and 

error statistics (PE50 13–19% and 18–24%) show a 

better fit for KPAR-Lee than for KPAR-Devlin. The slope 

of KPAR-Lee is however quite different from 1, mainly 

because of the underestimation of the high KPAR points 

(between 1-2 m
-1

), where the QAA should be pushed to 

a longer reference wavelength (Lee, pers. comm.). 

Whereas SD showed underestimation for high T points, 

this discrepancy is not visible in the KPAR comparison. 

 

In some points however, KPAR-Devlin underestimated 

with respect to the SmartBuoys. These points 

correspond to a fluorescence peak in the in situ data in 

early spring (April), very likely an algal bloom. In fact, 

most points below the 1:1 line have a relatively high in 

situ fluorescence. This is a weakness in the KPAR-Devlin 

formulation, which ignores the impact of algae on the 

KPAR, especially obvious in situations with relatively 

low SPM and high algal biomass. The same points are 

found near the centre of the point cloud in the KPAR-Lee 

formulation. After filtering out data with in situ 

fluorescence > 2 (not shown here) the R² of KPAR-

Devlin is improved to 83–91%, with PE50 of 16–19%. 

For KPAR-Lee, this filter also improves R² to 81–90%, 

median errors change little. 

 

4. CONCLUSIONS 

In the present study the performance of the three 

MERIS processors was quite comparable. The SD 

processor does consequently show higher R² values, 

with most of the time lower median errors, than the M7 

and M8 processing. SD and M8 give more matchups 

than M7, largely because of the restrictive PCD_1_13 

flag in M7. All processors seem limited for the most 

turbid waters, where M7 and M8 do not provide data 

and SD underestimates.  
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From the turbidity algorithms presented here, T-Nechad 

at 681 nm seemed to perform best; however, the 

differences between algorithms were small. T-Ouillon 

shows the advantages of a switching algorithm: the 

scatter in the low turbidity points significantly reduces 

by switching to a ‘clear’ algorithm. In coastal waters, 

KPAR is often dominated by sediments and then the 

simple empirical relationship KPAR-Devlin performs 

well, and has a slope close to 1. KPAR-Lee shows better 

statistical performance, but its slope is quite different 

from 1. Both algorithms benefit from removing points 

with high in situ fluorescence. 

 

It is shown that in highly variable systems even with 

moderately strict criteria, i.e. matchups within 60 

minutes, considerable scatter remains for satellite-in situ 

turbidity comparisons. For closely timed (<10 minutes) 

matchups with low in situ variability, the scatter, but 

also the number of points, is strongly reduced. The 

importance of quasi-concurrent observations was also 

illustrated with time-shifted matchups by [4]. The 

advantage of continuously measuring autonomous 

systems for satellite validation, especially in highly 

dynamic coastal waters, where closely timed matchups 

are essential, is clear. These systems can typically 

provide a matchup per cloud-free pixel. 
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Figure 2 The T-Nechad algorithm as function of SmartBuoy turbidity for M7 (left column), M8 (middle column) and 

SD (right column), for the 620, 665, 681, and 708nm bands (top to bottom rows). Dots are coloured according to buoy: 

red: WARP, blue: WGAB, and green: LIVB. 
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Figure 3 The T-Ouillon algorithm as function of SmartBuoy turbidity for M7 (left column), M8 (middle column) and 

SD (right column). The first three rows are the turbid polynomial, turbid power law and clear algorithms (respectively 

algorithms 1, 2, and 6 in [9]) The bottom row is the 1+6 merged algorithm. Dots are coloured according to buoy: red: 

WARP, blue: WGAB, and green: LIVB. 
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Figure 4 The T-Nechad algorithm with additional quality checks (see text) as function of SmartBuoy turbidity for M7 

(left column), M8 (middle column) and SD (right column), for the 620, 665, 681, and 708nm bands (top to bottom 

rows). Dots are coloured according to buoy: red: WARP, blue: WGAB, and green: LIVB. 
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Figure 5 The KPAR-Devlin (top row) and KPAR-Lee (bottom row) algorithms as function of SmartBuoy KPAR for M7 (left 

column), M8 (middle column) and SD (right column). Dots are coloured according to buoy: red: WARP, and blue: 

WGAB. The circles indicate points with high in situ fluorescence (see text). 


