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1 ABSTRACT 
 
Space-time filling of the gaps in satellite data archives is 
an important step for the improvement of various 
marine ecosystem studies. The Data Interpolation with 
Empirical Orthogonal Functions methodology 
(DINEOF) allows calculating missing data in 
geophysical datasets without requiring a priori 
knowledge about statistics of the full data set [1]. It was 
successfully applied to SST reconstructions as in [1] and 
[2]. Here, the DINEOF reconstruction method is applied 
to surface chlorophyll a (CHL), total suspended matter 
(TSM) and sea surface temperature (SST) data over the 
Southern North Sea and English Channel obtained from 
the BELCOLOUR archive. 
 
2 INTRODUCTION 
 
The objective of this study is to demonstrate a method 
for reconstruction of complete space-time information 
for surface CHL and TSM from an archive of satellite 
imagery. The resulting data is better suited for 
applications such as algae bloom detection or for 
providing light forcing for ecosystem modeling. In the 
longer term comparison of satellite data with 
reconstructed fields will contribute to the quality control 
of satellite data by highlighting suspect or extreme data. 
 
Temporal coverage of OC data is not enough. Wide 
swath polar-orbiting ocean colour remote sensors 
acquire data with near-global coverage of the world’s 
oceans and seas every few days. For example, Belgian 
waters at 51°N are imaged by MODIS-Aqua every day 
and by MERIS on average every 3-4 days. However, 
this maximal temporal coverage is greatly reduced by 
clouds and by sunglint. The usable data is further 
reduced for environmental conditions where derived 
products are considered to be of unacceptable quality 
because of various processing problems particularly 
relating to atmospheric correction (adjacency effects, 
high aerosol optical thickness, absorbing aerosols, 
cloud-edge and cloud shadow, low sun or viewing 
zenith angle, etc.). This temporal coverage, although far 

superior to shipborne sampling methods, is insufficient 
for many applications. 
 
For example, for CHL based products, the development 
of harmful algae blooms can occur rapidly, over the 
period of a few days, and a satellite-only detection 
system may be rendered completely inoperative if this 
coincides with a cloudy period. As another example, 
TSM products are used by ecosystem modelers to 
control the light forcing in simulations designed to 
hindcast or forecast eutrophication as function of 
anthropogenic nutrient inputs [3]. These models require 
complete spatio-temporal data fields as input. Moreover 
it is important that such inputs contain as much of the 
high frequency variability as possible since TSM 
dynamics, such as the clearing of the water column by 
settling after a storm event, may be responsible for 
triggering algae blooms. More generally, users of 
satellite data products, such as marine scientists 
investigating conditions at specified sampling locations, 
prefer to receive a continuous time series of data rather 
than the gappy series typically provided directly from 
optical remote sensors. There is, therefore, a strong user 
demand for complete time series and cloud-free maps of 
CHL and TSM products. This is the primary motivation 
for the present study which has the objective of 
generating spatio-temporally complete 3D (horizontal 
space and time) fields of surface CHL and TSM from a 
collection of individual instantaneous images of these 
fields as retrieved from MERIS and MODIS.  
 
The use of cloud filling techniques in ocean colour 
imagery is much less developed then in sea surface 
temperature imagery, perhaps because the satellite data 
has become easily available only recently or perhaps 
because CHL retrieval is notoriously more error-prone 
than SST retrieval. Examples of cloud filling of CHL 
images are provided in [4]. Use of a Kriging approach 
for cloud-filling of MERIS CHL imagery is described in 
[5]. Aspects of spatial and temporal interpolation of 
ocean colour data are addressed in [6] in the context of 
merging of global CHL data from missions such as 
SeaWiFS and MODIS. Simple 
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interpolation/replacement techniques using nearby 
pixels in space or time are used by [7] to fill cloudy 
MODIS imagery. 
 
3 DATA 
 
3.1 The BELCOLOUR database 

 
Satellite images used in this study are extracted from the 
BELCOLOUR database [8]. This archive includes level 
2 parameters such as chlorophyll a concentration CHL 
and total suspended matter TSM from SeaWiFS (1997-
2004), MODIS-Aqua (2002-present) and MERIS (2002-
present) for the North Sea [48.5°N-60°N, 4°W-9°E]. 
Sea surface temperture data are also archived from 
MODIS-Aqua (2002-present). These data, originally 
provided in the scan coordinates, are re-sampled in an 
equi-rectangular projection with a 1km spatial 
resolution to facilitate the use in applications including 
the DINEOF analysis. In this step, unreliable pixels are 
masked using the level 2 flags.  
 
3.2 Selected data 
 
The present study focuses on the subregion of the 
English Channel and the Southern Bight of the North 
Sea [48.5°N-52.5°N, 4°W-5°E] and was based on 595 
MERIS TSM and CHL images (2003-2006) and on  
3376 MODIS TSM and SST images (2002-2006). In the 
original datasets, the temporal proportion of missing 
data calculated for each sea pixel ranges from 75 to 100 
% (without distinction of the reason : pixel out of 
satellite track, cloud cover, unreliable data).  

 
4 METHODOLOGY 

  
4.1 Pre-processing  

 
In order to avoid the production of some artefacts in the 
EOFS, some limitations have to be set on the acceptable 
spatio-temporal proportion of missing data as in [2]. 
Prior to Dineof treatment, it was chosen to eliminate 
each image holding less then 5 % of the expected data. 
This reduced the number of exploitable images to 356 
for MERIS and 1291 for MODIS. The same elimination 
criteria was applied in time, excluding thus from the 
study all pixels holding less then 5 % of valid data 
through the temporal dimension. After this first 
selection, the MODIS TSM data set presented a sligthly 
lower proportion of missing data than the MERIS 
dataset (69% against 73%). 
 
 In order to enhance the sensibility of the DINEOF 
analysis to the spatio-temporal variations of CHL and 
TSM data occuring in the lower part of the ranges, the 
base 10 logarithm of the data was taken instead of direct 
units. This scale change prior to the analysis also 

prevents any reconstructed pixels to reach negative 
values of the direct unit scale. The background field is 
calculated as mean value observed in each pixel over all 
selected images. This field is then deduced from the 
dataset in order to provide DINEOF with anomalies 
around the mean local value measured in base 10 
logarithm. 

 
4.2 DINEOF: described methodology   
 
When having only cloud-free images, a very efficient 
way to synthesize the information contained in a 
collection of scenes is the use of empirical orthogonal 
functions (EOFs, also called principal components in 
other research domains). These functions have some 
interesting properties: when only one EOF is used, this 
EOF is on average the closest to all images, when 
multiplied for each image by appropriate amplitude. 
Hence it is the best possible approximation of all images 
using only one spatial pattern (or EOF) and an 
amplitude for each image. With two EOFs, it can be 
shown that no other combination of two patterns can 
provide a better approximation to all images than these 
two. In general the first N EOFs are therefore the best 
way to summarize the information content of all images 
if only N pattern can be stored. Each image is then 
replaced by a filtered version in which the basic patterns 
are linearly combined with amplitudes corresponding to 
each image. When images are sequential in time, the 
amplitudes can be interpreted as a time evolution of the 
spatial patterns amplitude and we will refer to them as 
temporal modes. The practical calculation of the EOFs 
can be performed by a singular value decomposition of 
the data matrix X. To construct the data matrix, each 
scene is stored as a one-dimensional array and 
corresponds to a column of the matrix X. The SVD 
decomposition thus provides 3 matrixes as in Eq. 1, 
giving direct access to the spatial patterns (colmumns of 
matrix U), the temporal evolution of these patterns 
(columns of V) and their overall amplitude (S). 
 

X = U . S . VT          (1) 
 
The amplitudes are generally stored by decreasing 
importance so that when using not all EOFs but only the 
first N, we neglect the smallest contributions. In this 
case, the truncated representation is given in Eq. 2, 
where the matrices on the right hand side only contain N 
columns corresponding to the N EOFs retained. 
 

Xa = UN . S . (VN)T           (2) 
 
Retaining only these dominant EOFs filters out some 
information from the scenes and it is customary to 
quantify the filtering effect by providing the explained 
variance when retaining N EOFs. This quantity is 
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generally expressed as a percentage of the total variance 
(information content) of the original data.  
 
If we had cloud-free images, EOFs could be calculated 
easily and an approximate representation of each image 
obtained as a truncated combination of a few EOFs. 
Hence we can imagine to use this combinationof EOFs 
for points in which we do not have data to interpolate 
the missing data there. Of course we have a circular 
dependence because the calculation of EOFs requests a 
set of cloudless images and the interpolation of the 
missing data requests the knowledge of the EOFs. To 
solve this problem, an iterative method was 
implemented in the DINEOF package: 
 
Assuming we know the first EOF, we can estimate the 
missing data value at any location with this EOF. Once 
we have this value, the EOF can be recalculated and so 
on until convergence. Then a second EOF is taken into 
account with the same approach, before going to a third 
and so on.  
 
There remains to initialise the iterative process and to 
decide when to stop adding EOFs to the reconstruction. 
The first point is easily dealt with by putting a first 
guess of zero anomalies in the missing data points, 
while the number of retained EOFs is fixed by a cross-
validation technique: a few data points are set aside by 
adding virtual clouds on some scenes and an rms misfit 
between the reconstruction and the data set aside is 
calculated for each reconstruction. The number of EOFs 
retained is then naturally the one that leads to the 
minimal misfit. For more details we refer to [1] and [2]. 

 
4.3 Production of complete fields at regular time 

steps and extraction of multitemporal 
averages  

 
Once the EOFs are defined by DINEOF, they can be 
exploited to regenerate full fields at any intermediate 
moments when no satellite images were acquired, by 
assuming that a linear interpolation of the temporal eofs 
is a valid estimate of their evolution. In the present 
work, full fields were produced at daily intervals for the 
whole period. For MODIS, this temporal resolution is 
generally comparable to the frequency of exploitable 
images and is thus meaningfull, except in some winter 
periods. Thus DINEOF treatment of MERIS products in 
the North Sea area allows producing weekly averaged 
fields as seasonal climatologies studies. 
  
5 RESULTS 
 
Optimal reconstructions (minimising the global error 
estimator) were obtained by DINEOF when synthetising 
the original signal into 8 modes for MERIS CHL and 
into 18 modes for MERIS TSM. The variability of these 

original signals explained by the EOF synthesis reached 
93.5 % for CHL and 97.2 % for TSM. For the MODIS 
TSM dataset, the 97.5 % of the original variability of 
the signal could be synthetised into 14 modes, with less 
weight on the first mode comparativelly to MERIS 
TSM, revealing thus that the secondary TSM dynamic 
modes are better captured as consequence of the higher 
frequency of image acquisition and of the lower global 
proportion of missing data of the MODIS dataset. The 
MODIS SST dataset could be synthetised into 13 modes 
explaining 98 % of the input signal variability, of which 
67% only by the first mode, underlying the strong 
seasonal pattern of the SST dynamic for this area. 
 
5.1 Background fields and 3 dominants EOFs 

retained for MERIS TSM 
   
For MERIS TSM, the background field is illustrated in 
Fig.1, the 3 dominants spatial EOFs are illustrated in 
Fig.2, Fig.3 and Fig.4 together with the corresponding 
parameter ‘varex’ representing the variability of the 
original signal explained by each EOF, whereas the 
associated temporal modes are illustrated in Fig.5.  
 
The TSM background field shows a general raising 
gradient towards the coasts, an inverse correlation with 
water depth, and a clear influence of large estuaries. 
 
The first mode of MERIS TSM account for about 40 % 
of the signal and is clearly seasonal signal, being 
positive in winter and negative in summer: it shows 
general winter increase of surface TSM in most of the 
domain but particularly in shallow areas, and the 
opposite in summer. The contribution of this EOF in the 
most western and central part of the English Channel is 
opposite, with TSM positive contribution in summer 
and negative contribution in winter, relatively to the 
background field. The second mode is generally 
representing the dynamic of some summer local 
reduction (relatively to the previoussly explained signal) 
in the south-east coasts of England and in the coasts of 
Normandy in France, as in large part of the southern 
Bight of the North Sea. By opposition this mode 
describes a mecanism of increase of TSM in the western 
and central part of the English Channel, relatively to the 
dynamic explained by the previous mode. Third mode 
shows already complex spatio temporal modulations, 
and the complexity of interpretation of the modes raises 
as we look at the further retained modes, having 
progressively less weigth in the reconstruction of the 
complete signal. 
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Figure 1. Background field obtained forMERIS TSM. 

 

 
Figure 2. Spatial EOFs obtained for the first mode of 
MERIS TSM signal (map of coefficient of variation 

around the background field). 

 

 
Figure 3. Spatial EOFs obtained for the second mode of 

MERIS TSM signal (map of coefficient of variation 
around the background field). 

 
Figure 4. Spatial EOFs obtained for the third mode of 

MERIS TSM signal (map of coefficient of variation 
around the background field). 

 

 
Figure 5. Temporal EOFs obtained for the 3 first modes 

of MERIS TSM signal (coefficients of variation of 
weight of each mode in the signal reconstruction, zoom 

on the period 01/2003-06/2005). 

  
5.2 Multitemporal averages and time series 

extraction at reference stations. 
 
Weekly and monthly averaged fields were produced 
from daily fields reconstruction for MERIS TSM and 
CHL products, as for MODIS TSM and SST products. 
As illustration for MERIS TSM and CHL, weekly 
averaged seasonal signals were extracted at two 
reference stations: the Scheelde turbidity maximum 
station in the Belgian shelf, and the CEFAS buoys 
“West G” in the U.K. waters (Fig.6 and Fig.7). These 
time series shows well the strong seasonal TSM 
dynamics and the onset of the spring CHL bloom 
corresponding to the sharp reduction of TSM, higher 
TSM and CHL concentration of the Scheelde plume 
station regarding to the ‘WestG’ station, as the 
unusually intense spring bloom event observed in the 
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Scheelde plume in 2003 due to a combination of 
unusual levels of PAR light and Phosphorus 
concentrations as described in [9].  
 

 
Figure 6. Localisation of the‘CEFAS West G’ and 

‘Scheelde Turbidity Maximum’ stations on a weekly 
averaged reconstruction showing the intense bloom 

event of spring 2003.  

  

 
Figure 7. Weekly averaged time series of MERIS TSM 

and CHL DINEOF reconstructions at reference stations 
‘CEFAS West G’ and ‘Scheelde Turbidity Maximum’. 

 
6 CONCLUSIONS 

 
This study shows promising applications of the 
DINEOF methodology to ocean optical remote sensing 
data. It allowed to fill in a 4 years set of MERIS CHL 
and TSM products, as of MODIS TSM and SST with 
sets of EOFs representing from 93 to 98 % of the 
variability of the input signal. Weekly and Monthly 
averaged reconstructed fields were produced from 
regular daily reconstructions, underlying the interest of 
the global method for the establisment of precise surface 
water seasonal climatologies. These products were 

exploited by other studies for comparison with in situ 
data, as to attempt further improvements of marine 
ecosystem models using remote sensing products as 
forcings [3]. 
 
Any subregional or local multitemporal averages can be 
reproduced with the described DINEOF approach and 
provided to interested users, according to the objective 
of their study.  
 
Estimation of the quality of the reconstructions were 
already promising, error maps were produced according 
to [10]. Finally the ability of the method to identify 
oultying data was illustrated, which will allow to orient 
further improvements of the reconstruction 
methodology on these products.  
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