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ABSTRACT 

 
A hydro-optical algorithm based on reflectance at 555nm has been used in the past for suspended particulate matter 
concentrations (SPM) retrieval from SeaWiFS over the Belgian coastal (case II) waters in Southern North Sea. The 
extra spectral resolution of MERIS offers the possibility of improvements, though necessitates algorithm recalibration. 
This study presents the calibration of the hydro-optical model used to derive SPM from MERIS reflectance for Belgian 
coastal waters. The model is based simply on reflectance at one suitably-chosen band.  Regression analysis is carried 
out for seaborne measurements of reflectance and SPM taken over our region of interest, to determine and calibrate the 
bands best suited for SPM detection. Sensitivity of the method to errors is studied.  
 
 
1 INTRODUCTION 
 
Suspended particulate matter concentration (SPM) mapping using satellite imagery is necessary to provide initial 
boundary conditions and validation data to sediment transport models [1]. The high spectral resolution of MERIS will 
enable SPM mapping with more accuracy since the use of red and near infrared bands reduces errors in SPM retrieval 
which may arise from variations in absorption of phytoplankton, Coloured Dissolved Organic Matter (CDOM) and non 
algal particles. The objective of this study is to design a regional algorithm for mapping SPM over the Belgian coastal 
waters from the high spectral resolution MERIS imagery.  
The relationship between inherent optical properties (IOPs) and the water surface reflectance was investigated by [2] 
and is expressed by: 
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where R_ is the subsurface irradiance reflectance defined by R_≡ Eu(0-)/Ed(0-) where Eu(0-) and Ed(0-) are 
respectively the upward and the downward irradiance just beneath the sea surface; a is the total absorption coefficient 
and bb the total backscatter coefficient. The coefficients l1=0.095, l2=0.079 are derived from radiative transfer 

simulations [2] to relate R_/Q to a and bb . Q is the ratio of the upwelling radiance to the zenith-upwelling irradiance. 

The coefficients a and bb  may be expressed as the sum of M water constituent inherent optical properties (IOP), where 
each is linearly related to its concentration by its specific IOP. Equation (1) can be written for each sensor spectral band, 
in terms of M unknown concentrations. Analytical or semi-analytical methods can be employed to resolve these 
equations for the desired water quality parameters: SPM, chlorophyll and CDOM. Analytical methods are based on the 
inversion of the physical model, for example by minimising the χ² error, between the measured and the modelled 
reflectance (e.g. the MERIS standard product [3]).  
In this study, a semi-analytical method is used to calibrate a regional algorithm estimating SPM from MERIS 
reflectance over the Belgian coastal waters. For that a use non-linear regression analysis is made of SPM and ρw 
measurements, sampled during BELGICA and Zeeleeuw campaigns from 2001 to 2003. 
The MERIS reflectance is defined by: 
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where Lw(0+) is the upwelling radiance, and Ed(0+) is the downwelling irradiance just above the water surface. It can 
be expressed in terms of the subsurface irradiance reflectance as follows (from [4]): 
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where:  
● tw→a is the bidirectional radiance transmittance from the water to the air, for a sun at zenith tw→a≈0.98; 
● ta→w is the irradiance transmittance from the air to the sea, a typical value is ta→w ≈0.96, for the sun zenith angle 
<60° in clear or overcast skies; 
● nw≈1.34 is the real part of the refractive index of water;  
● rR_ represents the internal reflectance of the upwelling irradiance, r being the water-air reflectance for totally diffuse 
irradiance. This should not be neglected for high reflectance occurring in case II waters. Here we use r=0.48 from [2]. 
● For case 2 waters the Q-factor varies with the sun zenith angle and the volume scattering function and with 
wavelength. It was considered to range from 2.7 to 4.6 sr for high vs low sun [5]. Here we will use an average value 
Q=3.7 sr though we note that the model used has very little sensitivity to this input. 
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The hydro-optical model of [2] links the subsurface irradiance reflectance to the inherent water optical properties a 
and bb . For 89% of our ρw= dataset, where ρw does not exceed 0.09 for any band, the error associated with the second 
order term of (1) does not exceed 16%, 24% and 10% respectively in the blue-green, red and near infrared bands.  This 
term is therefore neglected here and (1) becomes: 
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bb  is related to SPM concentration (denoted by S ) via *
bsb bSb =  (6) 

 where *
bsb  is the specific backscatter coefficient. Substituting this for bb in (5) and inverting this equation gives: 
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We define the factors AQ and CQ  as: 
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and substitute  (4) in (7) , leading to:  
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2 Data sets 
 
68 wρ reflectance spectra were acquired during Belgica and Zeeleeuw cruises during 2001-2003 [6], using a system of 
three Trios spectroradiometers with 2.5nm resolution covering the spectral bandwidth [350nm-950nm]. Since MERIS 
bands are narrow we interpolate ρw for the 15 MERIS band central wavelengths ranging from 412nm to 900nm. For 
SeaWiFS the reflectance ρK

w is computed for each band K with a band width ∆K using the spectral response σ(λ) of 
SeaWiFS as follows: 
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Fig. 1. Reflectance spectra recorded by the Trios system and the derived MERIS (resp. SeaWiFS) spectra plotted by 
squares in the left (resp. triangles in the right) figure. The sensor response functions are given as dashed lines. 

SPM measurements were made at 3m depth, and using a GF/C filter. Fig (2) shows their frequency distribution. Note 
the isolated observation of 178.4mg/l recorded at station MH6 (51°52.278’,1°27.405’) during the Belgica campaign of 
16.04.2002. At this location the highest reflectance spectrum, reaching 0.12 around 570nm, was recorded. 

 
Fig. 2. The distribution of SPM measurements used in this study. 

 
 
 

3  NON LINEAR REGRESSION ANALYSIS 
 
Regression analysis will determine the optimal parameter AQ in the non linear equation (9) for which the curve plot fits 
best the observations. We modify this equation to allow for measurement and model errors, by adding a second 
coefficient B:  
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For the N seaborne measurements of iS  and ρi
w, i=1…N, where N is the number of observations, model estimates are 

denoted by iS
)

 and the mean value of iS  by S . We define the residual or error sum of squares, SSE, and the coefficient 

of multiple determination, R², respectively by: 
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R² indicates the fraction of variance in the observations set (Si) that is explained by the regression model and may vary 
from 0 to 1. R²=1 means the curve fits all data points. The coefficient A that minimizes SSE, corresponding to the 
highest R², is selected for our algorithm calibration. Nevertheless, such a regression analysis is appropriate only when 
sample variance does not depend on data value and remains constant over the data ranges. However, here Si is 
homoscadastic  i.e. variance increases with increasing ρi

w. [7] reported that SPM are log-normally distributed for the 
Southern North Sea. Hence, log(SPM) are more likely to stabilize the dependent variable Si variance [8]. We re-
formulate the multiple determination coefficient of the regression defined in (13) using the log-transformation: 
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Since the contribution of certain bad points hugely increases the SSElog value, it is necessary to study the distribution 
of residuals to determine which observations are to be considered as “outliers” to be removed. To objectively identify 
outliers we examine the statistical parameter: jackknife residual [8] for each observation. The Schematic plot of 
jackknife residuals pointed out 8 (respectively 6) outliers for the models adapted to MERIS bands (respectively to 
SeaWiFS bands). The highest reflectance value recorded at station MH6 was considered as an outlier by the jackknife 
algorithm because it is an extreme observation. However, this measurement seams to be coherent with the highest SPM 
value recorded here (see section 2), so it will not be removed from the regression analysis. Except for this observation 
all the 7 outliers (resp. 5) were removed. 
 

 
4  RESULTS 
 
For this MERIS (respectively SeaWiFS) SPM-algorithm, the regression analysis coefficients for the best fitting curves 
are given in table 1 (respectively table 2) plus the Bias and the mean relative error εr defined by: 
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Fig. 3 and 4 show the model curves. We note that for higher wavelength bands (> 750nm) no ρw measurements exceed 
the value ρt

w= 0.09 and the approximation (5) applies better. However, the signal to noise ratio may be less favorable  
in these bands than in lower wavelengths such as the MERIS band 708nm. For our data sets the mean value of the ratio 
ρw

753 /ρw
708 is about 0.34.  

 
Fig. 3. The SPM measurements vs reflectance data scatterplot with the model curves for the 9th and the 10th MERIS bands. 
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Fig. 4. The SPM measurements vs reflectance data scatter plot with the model curves for the 5th and the 7th SeaWiFS bands. 

Table 1: MERIS-SPM retrieval models for band 708nm and 753nm. 

Wavelengths (nm) AQ(mg/l) BQ(mg/l) R² (%) Bias (%) εr (%) 
708 111.21 4.46 85.49 5.54 26.13
753 421.87 3.74 84.55 5.80 26.04

Table 2: SeaWiFS-SPM retrieval models for the 5th and the 7th bands. 

Wavelengths (nm) AQ(mg/l) BQ(mg/l) R² (%) Bias (%) εr (%) 
765 360.26 4.16 82.96 6.64 28.89 
555 25.55 4.50 67.37 12.64 43.99 

 
 
5 PRELIMINARY VALIDATION FOR MERIS 

 
At the moment of this study we have only 3 good match-up MERIS images from which 5 good quality reflectance 
spectra were extracted. Comparison with seaborne SPM measurements yields an average relative error of estimation of 
about 35% for the MUMM 708nm regional algorithm (resp. 41% for the 753nm model), while the SPM MERIS 
product gives 63%  relative error. However, more data are required for a valid comparison of these two products. 

 
 

6 SEAWIFS ALGORITHM VALIDATION  
 
9 SeaWiFS images have been analysed with match-up seaborne data at 23 locations. The validation of the algorithm 
gives a mean relative error of estimates of 36.4% with 78% correlation. This model is better than a previous model 
(unpublished) used to estimate SPM from SeaWiFS band 5 over the Belgian waters via:  
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The relative error of estimation was 45.49% and the correlation about 60%. Both models are plotted in Fig.5 and 
superimposed with SPM vs reflectance measurements.  
 
 
 
7 DISCUSSION 

The impact of ρw errors is examined through the following relationship derived from Eq. 9:
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 Except for very high reflectance ρw<<CQ≈0.187 and for S> B (4.5mg/l) relative errors in reflectance generate 
relative errors in SPM with the same magnitude because of linearity of Eq.(11). For very turbid waters as for our 
dataset, the reflectance reaches 0.1 in band 708nm, yielding a relative error in SPM about 2.25 times the relative error in 
the reflectance, whereas in band 753nm the lower reflectance (ρw<0.06) enables the model to yield lower relative 
errors for SPM estimates. On the other hand, the model sensitivity to errors in band 708nm is 3 times lower than its 
sensitivity to errors in band 753nm reflectance (see section 4). As a balance, we may use the band 708nm model to 
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estimate SPM in clear to turbid waters and apply the 753nm model for very turbid waters to avoid errors in the non-
linear part of the 708nm model (high reflectance range) and the errors due to the water vapour correction. 
In conclusion, the 753nm MERIS band model is well adapted for the turbid Belgian coastal waters, but for clearer 
waters (S<4.5mg/l) this model should be extended. 
 

   
 

Fig. 5. On the Left: the squares show SPM retrieved from ρw data at 765nm and the triangles mark SPM estimated from 
a previous model using R0- at 555nm. On the right: The scatter plot of measured SPM vs reflectance data at band 765nm 
(squares) and band 555nm (triangles). The solid line shows the ρw

(765nm)
  model and the dotted line the R0-(555nm)  model. 
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