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ABSTRACT 

Image processing for satellite water quality products 

requires reliable cloud and cloud shadow detection and 

cloud classification before atmospheric correction. 

Within the FP7/HIGHROC (“HIGH spatial and 

temporal Resolution Ocean Colour”) Project, it was 

necessary to improve cloud detection and the cloud 

classification algorithms for the spatial high resolution 

sensors, aiming at Sentinel 2 and using Landsat 8 as a 

precursor. We present a comparison of three different 

algorithms, AFAR developed by RBINS; ACCAm 

created by VITO, and IDEPIX developed by 

Brockmann Consult. We show image comparisons and 

the results of the comparison using a pixel identification 

database (PixBox); FMASK results are also presented as 

reference. 

1. ALGORITHMS PRESENTATION 

 

1.1 The FMASK method 

The FMask software v3.2 [1] [2] consists of a two-pass 

method for detecting clouds followed by an object-

oriented method for detecting cloud shadows projected 

onto water and land surfaces. The first pass consists of a 

set of spectral tests, all of which much be satisfied for a 

pixel to be considered as a “potential cloud”. The second 

pass then establishes normalized temperature, spectral 

variability, and brightness probabilities for pixels over 

land and water using automatically computed scene-

dependent thresholds. A cloud probability mask is 

derived and combined with the first pass potential cloud 

mask. The algorithm was implemented at RBINS and 

provides the reference on which the other algorithms are 

compared to. Full documentation of the method (applied 

with default configuration) is provided in the 

abovementioned papers and the corresponding software 

is available for public download from 

https://code.google.com/p/fmask/.  

 

1.2 ACCAm 

The ACCAm (Automated Cloud-Cover Assessment 

modified) cloud detection process is based on the ACCA 

(Automated Cloud-Cover Assessment) algorithm first 

published by [3] for Landsat 7 and further developed at 

VITO for Landsat 8. The cloud detection is done using 

a decision tree of several thresholds on different bands 

(green, red, NIR, SWIR, and TIR) and band ratios 

(Figure 1).  

The algorithm makes also use of the Landsat 8 ‘Coastal 

Aerosol’ and ‘Cirrus’ bands, dedicated for cirrus cloud 

detection. In ACCA, the detection process consists of 2 

parts, where the first one classifies ambiguous pixels, 

which are then evaluated against a statistically derived 

threshold on the TIR band in the second part. However, 

this strategy is far from satisfactory for scenes over 

water, and has been removed in ACCAm, i.e. ACCAm 

does not differentiate any more between ambiguous 

clouds and sure (certain) clouds. The Landsat 8 bands 1 

to 9 are first converted to Top Of Atmosphere (TOA) 

planetary reflectance, whereas bands 10 and 11 are 

converted to at-satellite brightness temperature.  

 

https://code.google.com/p/fmask/


Submitted for the Proceedings of ESA Living Planet Symposium, Prague, 9-13 May 2016, ESA-SP 740 

 

Figure 1. Threshold based decision tree for cloud detection with ACCAm

 

1.3 The AFAR method 

1.3.1 Cloud detection 

An overview of the cloud and cloud shadow detection 

method occurring in AFAR [4] is given in Figure 2. 

AFAR stands for ACOLITE/FMASK Aquatic Refined, 

since the method is designed for future use with the 

ACOLITE atmospheric correction software [5] and has 

a strong heritage from the FMASK method “first pass” 

tests, but also distinct differences, adopted here for 

optimal performance in aquatic applications. 

In the AFAR method, a distinction is made between 

cirrus and other clouds because of the different typical 

height and hence different shadow of cirrus clouds. The 

tests shown in Figure 2 are defined in Table 2. For more 

on this method, please refer to [4]. 

1.3.2 Cloud shadow projection 

AFAR also offers a Cloud shadow detection. AFAR 

adopts a conservative approach to cloud shadow 

detection, assuming all detected clouds (except the 

“possible clouds” which will mainly be sandy or surf-

covered beaches) to have a cloud top height of 5km, or 

10km for cirrus clouds. AFAR then projects the shadow 

from the given height in sun viewing direction using the 

Bresenham’s line algorithm [6] and masks all pixels as 

cloud shadow from the cloud itself to the maximum 

horizontal extent. 
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Figure 2. Flow-chart depicting pixel identification process from top of atmosphere (TOA) pixel data to the level 1 pixel 

classification (rectangular boxes). All tests are performed on a pixel-by-pixel basis except the cloud shadow test, which 

uses information from neighbouring pixel in the direction of the sun (shown via red arrows).

Table 1. Summary of the spectral tests used in the present study. SWIR=Short Wave Infrared; NDSI=Normalised 

Difference Snow Index; NDVI=Normalised Difference Vegetation Index.

 Name Test Notes 

CIRRUS CIRRUS 𝜌1373 > 0.01 Only detects cirrus 

clouds 

CLOUD 

(if all 

tests 

passed) 

Bright SWIR 𝜌2201 > 0.0215 

 

Removes land and 

cloud 

Low NDSI 𝑁𝐷𝑆𝐼 =
𝜌550 − 𝜌1650

𝜌550 + 𝜌1650

< 0.8 

 

Rejects snow 

Low NDVI 𝑁𝐷𝑉𝐼 =
𝜌830 − 𝜌660

𝜌830 + 𝜌660

< 0.8 

 

Rejects vegetation 

White |𝜌483 − 𝜌𝐴𝑉𝐸| + |𝜌561 − 𝜌𝐴𝑉𝐸| + |𝜌655 − 𝜌𝐴𝑉𝐸|

𝜌𝐴𝑉𝐸

< 0.7 

 

where 𝜌𝐴𝑉𝐸 = (𝜌483 + 𝜌561 + 𝜌655) 3⁄  

 

May include bare 

soil, sand, 

snow/ice 

HazeOptimised 𝜌483 − 0.5 ∗ 𝜌655 > 0.08 

 

May include 

rocks, snow/ice 

NIR/SWIR 𝜌830

𝜌1650

> 0.75 
Rejects bright 

rocks 

WATER WATER 𝜌2201 < 0.0215  

CLOUD 

(not 

SAND) 

Bright 443nm 𝜌443 > 0.2 Avoid bright white 

sand 

Not low NDSI 𝑁𝐷𝑆𝐼 =
𝜌550 − 𝜌1650

𝜌550 + 𝜌1650

> −0.17 

 

Avoid bright white 

sand 
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1.4 IDEPIX 

The cloud screening for Landsat 8 developed at 

Brockmann Consult (BC) is implemented in IDEPIX. It 

includes a specially trained neural net for Landsat 8, as 

well as the following tests: SHIMEZ, CLOST, and 

OTSU. 

The SHIMEZ test (“greyscale” method, adapted from 

[7]) assumes that clouds are grey to white. The 

assumption is made that the mean (B) of the red, blue, 

and green bands is greater than a definable threshold, 

and that the difference between each of two bands is 

lower than a pre-determined threshold (A). 

 

𝑆𝐻𝐼𝑀𝐸𝑍 =  𝑎𝑏𝑠(𝑏𝑙𝑢𝑒/𝑟𝑒𝑑 − 1)
< 𝐴 && 𝑎𝑏𝑠(𝑏𝑙𝑢𝑒/𝑔𝑟𝑒𝑒𝑛
− 1)
< 𝐴 && 𝑎𝑏𝑠(𝑟𝑒𝑑/𝑔𝑟𝑒𝑒𝑛
− 1)
< 𝐴 && (𝑟𝑒𝑑 + 𝑔𝑟𝑒𝑒𝑛
+ 𝑏𝑙𝑢𝑒)/3 >  𝐵 

A = 0.15 over the day 

B = 0.25 

(1) 

 

CLOST (Cloud Stamping test) generates a virtual band 

from the product: coastal_aerosol * panchromatic * 

blue * cirrus. A histogram of this product is calculated, 

which looks quite narrow and sharp. The threshold to 

separate clouds from non-clouds is within the interval 

[10-5, 10-3]. The threshold is determined to be at 3% of 

the maximum value of the histogram. In this case, the 

threshold value was determined at 10-3. 

The OTSU’s thresholding method assumes that the 

image contains two classes of pixels following a bi-

modal histogram - foreground pixels and background 

pixels. It then calculates the optimum threshold 

separating the two classes so that their combined spread 

is minimal. This test is quite useful in that it provides a 

dynamic thresholding based on the current image being 

processed, and can thus (in theory) adapt to the 

conditions of the image. This has for example been 

tested in [8]. The software itself and its description can 

be found at the following links: 

http://www.labbookpages.co.uk/software/imgProc/otsu

Threshold.html; 

http://en.wikipedia.org/wiki/Otsu%27s_method; 

http://rsb.info.nih.gov/ij/plugins/otsu-

thresholding.html;  http://habrahabr.ru/post/112079/  

The final cloud mask within IDEPIX is then a 

combination of all 4 masks as described in Eq.(1). 

 

𝐶𝑙𝑜𝑢𝑑 =  (𝑁𝑁𝑟𝑒𝑠𝑢𝑙𝑡 ==
𝐶𝑙𝑜𝑢𝑑 𝑠𝑢𝑟𝑒) 𝑂𝑅 (𝐶𝐿𝑂𝑆𝑇 ==
𝑇𝑟𝑢𝑒) 𝑂𝑅 (𝑆𝐻𝐼𝑀𝐸𝑍 == 𝑇𝑟𝑢𝑒) 𝑂𝑅 (𝑂𝑇𝑆𝑈 =
= 𝑇𝑟𝑢𝑒)  

(2) 

 

The neural net is also retrieving semi-transparent clouds, 

which are then put into a separate class. 

The information from the Cirrus band can also be added 

to the Cloud mask defined in Eq.(2). The threshold there 

is not easily defined; this is left to the user to decide. 

2. METHODS – PIXBOX VALIDATION 

 

PixBox is a combination of a software designed for 

manual pixel selection and labelling and the respective 

data bases generated for further analysis. PixBox has 

been developed at BC in the framework of the BEAM-

VISAT software environment and is currently being 

ported to the Sentinel Application Platform (SNAP). 

PixBox was developed as a means to generate databases 

for validating cloud classification for different sensors. 

Later on, the databases were also used for the training of 

neural nets (NN) that offer an automated pixel 

classification, oriented but not only towards cloud 

detection. The databases for NN training and validation 

are different data sets. Meanwhile pixel collections are 

available for AVHRR, MERIS FR and RR, SPOT VEG, 

MODIS Aqua and Terra, Landsat-8, ProbaV and 

Sentinel-2. Within the collection process, each pixel is 

labelled by a number of attributes, such as clear water, 

clear land, totally cloud, semi-transparent cloud, 

ice/snow, haze, dust, floating vegetation.  

The validation database for Landsat 8 represents a 

collection of 21 analysed scenes, for a total of 37060 

pixels classified. Pixels were collected using the visible 

channels from Landsat 8 (bands 2, 3, and 4). Figure 3 

shows the locations of the Landsat acquisitions. One 

scene is located outside the shown subset in Singapore.  

http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
http://www.labbookpages.co.uk/software/imgProc/otsuThreshold.html
http://en.wikipedia.org/wiki/Otsu%27s_method
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
http://rsb.info.nih.gov/ij/plugins/otsu-thresholding.html
http://habrahabr.ru/post/112079/
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Figure 3. Location of the Landsat 8 scenes used in this 

comparison exercise. 

The pixel type distribution within the pixel collection is 

presented in Table 2 and Table 3 shows the 

representation of shadow areas within the database.  

 

Table 2. Pixel Type distribution in the manually 

collected In-Situ Database 

Pixel Type Number of 

pixels 

collected 

Percentage 

classified 

Totally cloudy 6691 ~18% 

Semi-transparent 

cloud 

6748 ~18% 

Clear sky water 11976 ~32% 

Clear sky land 10547 ~28% 

Clear sky snow/ice 726 ~2% 

Spatially mixed 

snow_ice/water 

372 ~1% 

 

For the validation the same images that have been used 

for the pixel collection are processed with the different 

algorithms and a confusion matrix is generated by 

matching the manually labelled pixels with the cloud 

classification derived by the different algorithms. For 

this comparison, a subsample of 18 scenes out of the 21 

contained in the database have been processed for all 

methods, for a total of 33960 pixels classified for each 

method. 

Table 3. Percentage and distribution of classified 

shadow areas 

Shadow 

Area 

Number of pixels 

collected (total 

7063) 

Percentage 

classified (total 

19%) 

From 

total 

Within 

class 

Over 

clouds 

845 2 12 

Over land 2703 (+192 under 

semi-transparent 

clouds) 

8 41 

Over 

water 

2990 (+322 under 

semi-transparent 

clouds) 

9 48 

 

Comparison of classified pixels between the PixBox 

database (hereafter referred to as In-Situ database) and 

each method is achieved with the help of confusion 

matrices. The fields of the confusion matrix are filled 

using logical expressions that compare the different 

categories. Results are presented showing the number of 

pixels allocated to (a) specific class(es) with regards to 

the same one(s) in the in-situ database. These numbers 

allow the operator to know precisely how many pixels 

are rightly and wrongly (with regards to the in-situ 

database) classified. Associated to these numbers in the 

confusion matrix are the producer accuracy, user 

accuracy, error and overall accuracy numbers. These 

numbers (in percent) allow to estimate how well a 

classification is performing with regards to the person 

doing the (in-situ) classification (producer accuracy) or 

the person applying the classification (user accuracy).  

User accuracy (UA) represents the reliability of the 

classification, i.e. when a user takes a map and clicks on 

a specific class, how reliable the classification is in 

ordering the specific pixel in the given class. Producer 

Accuracy (PA) on the other hand estimates how well a 

pixel can be correctly classified. The overall accuracy is 

given by the percentage of correctly classified pixels on 

the basis of the total number of included pixels. 
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3. COMPARISON RESULTS 

3.1 Statistics - Confusion matrices 

3.1.1 Cloud detection 

Figure 4 presents the User Accuracy and Producer 

Accuracy for each method either over water classified 

pixels or for cloud pixels (both clouds sure and 

ambiguous). Overall, all methods perform quite well at 

detecting a cloud (UA of 100, 74.9, 82.9, 71.4% for 

ACCAm, AFAR, FMask, and IDEPIX respectively). In 

this respect, ACCAm is the best method at identifying a 

cloud when there is a cloud and no clear pixel is wrongly 

classified as cloud. The PA for clouds is very good and 

better than FMask for AFAR and IDEPIX (93.9% and 

88.4% respectively), but much less so for ACCAm with 

49.2% only. This means that ACCAm is not detecting 

all clouds but classifies some as clear water pixels. 

 

Figure 4 Aggregated confusion matrices results for UA 

and PA cloud detection over water from all four 

methods (ACCAm in blue, AFAR in orange, FMask in 

grey, and IDEPIX in yellow. 

 

3.1.2 Cloud shadow detection 

Figure 5 shows the statistics of the confusion matrix 

from AFAR and FMask cloud shadow detection 

performances against the in-situ database. AFAR is very 

successful at recognising a cloud shadow when there is 

one (PA of 92.3%), while FMask misses more than half 

of the clouds shadow (PA cloud shadow of 46.6%). 

AFAR is however classifying too many non-cloud 

shadow pixels as such (UA for cloud shadow of 56% for 

AFAR and 83% for FMask), because of the 

conservatively estimated cloud top height. 

 

 

Figure 5. Cloud Shadow UA and PA confusion matrix 

results from AFAR (light blue) and FMask (dark blue) 

 

3.2 Image comparisons 

A visual inspection helps to relate with the statistics 

derived from the confusion matrices. We present here 

two examples of the 18 scenes that have been analysed 

in this study (Figure 6 and Figure 7). The example of the 

Singapore image is a challenging scene as it is very hazy 

and the transition of haze and semi-transparent cloud is 

difficult to detect. Different colours are dedicated to the 

different cloud categories (sure clouds, semi-transparent 

and ambiguous clouds). The images confirm that the 

ACCAm is the least conservative cloud detection and 

some clouds, especially at the cloud border are not 

classified as cloud. The cloud sure flag from IDEPIX is 

smaller covering less clouds, which are detected partly 

as semi-transparent clouds. The AFAR results show a 

slightly different behaviour for the sure cloud class than 

the other algorithm, but regarding sure cloud and 

ambiguous cloud together, the same areas are flagged. 

  

Figure 6. True colour (RGB) images of two Landsat 8 

scenes. Left, Singapore taken on Nov. 5th 2014, right 

North Sea taken Sept. 7th 2014 
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Figure 7. Top Landsat 8 classified for each method (from left to right: ACCAm, AFAR, IDEPIX, FMask). Cloud sure in 

light grey, ambiguous cloud in green, semi-transparent clouds in orange, land in dark grey. Top Singapore scene 

fromNov. 5th 2014,bottom North Sea scene from Sept. 7th 2014.

 

4. CONCLUSION 

Landsat 8 pre-processing algorithms have been 

developed at RBINS, VITO, and BC. Most efforts have 

concentrated on finding a good cloud mask, as well as a 

land-water mask. All processing partners have 

developed a cloud masking algorithm, based partly on 

the similar ideas and methods but with some distinct 

differences. All three were shortly presented in this 

paper. 

In these studies, although statistics allow for a general 

overview of the goodness of fit or classification 

capability of a given algorithm, it is also essential to look 

at the images and the more specific coverage and 

detection of each algorithm. For example, ACCAm is 

the least conservative algorithm with very good 

performing in detecting clear pixels (with a 100% 

Producer accuracy for clear water detection, and a 100% 

User Accuracy for cloud (sure and ambiguous) 

detection), looking at RGB pictures allows us to 

understand that the algorithm does not detect all cloudy 

pixels, e.g. the cloud borders (the reason why PA for 

Cloud is only 49.2%). 

This comparison is good to show that all algorithms 

developed and further used in the project perform well 

over water for different cloud conditions. ACCAm is not 

masking any Clear Water pixels, while AFAR and 

IDEPIX offer the valuable possibility of detecting 

ambiguous clouds (such as semi-transparent clouds) or 

cirrus clouds, which are all encompassed in the cloud 

mask of ACCAm. AFAR offers static classification, i.e. 

a pixel is either classified as water or cloud or 

ambiguous or cirrus or land, whereas IDEPIX allows for 

multiple pixel classifications, e.g. a water pixel that is 

semi-transparent. Moreover, for IDEPIX, the masking 

of semi-transparent clouds is left to the user, who can 

decide to process the flagged pixels further or not. 

Within HIGHROC, we will implement IDEPIX together 

with the Cloud shadow detection process from AFAR 

attached to it as standard processing for Landsat 8; the 

other methods will be available as back-up, fall-back or 

other option. 

Although not shown here but all algorithms have also 

been successfully tested over land, which is important 

for inland waters and for nearshore coastal waters where 

clouds over land may have a shadow on water. 

Work is underway in all partners’ institutions to port the 

algorithms to Sentinel 2. BC is gathering pixels in order 

to train the neural net for S2, which will then be included 

in IDEPIX for SNAP (currently being built). AFAR 

from RBINS will be made available via ACOLITE also 
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for S2, and thresholds for S2 bands are presently being 

evaluated for ACCAm at VITO. 
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