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ABSTRACT 

A quantification of the available light in the water 

column is key to evaluate the water quality in lakes as it 

is one of the major factors determining primary 

production. The light environment in water is generally 

described in terms of the vertical attenuation coefficient 

(Kd) and euphotic depth (Ze) where the light is reduced 

to 1% of its (just below) surface value. Reliable models 

to estimate KdPAR (and Ze) from remote sensing 

measurements have been successfully demonstrated in 

marine applications using typical ocean colour missions 

such as MERIS-envisat (300m) and MODIS-AQUA 

(250-1000m). In this study, we present the adaptation of 

a semi-analytical model for Kd and Ze, developed for 

MERIS/MODIS, to the new and upcoming sensors 

bands for inland water cases. 

 

1. Introduction 

The current and upcoming sensors such as Landsat-8 

OLI, Sentinel-2 MSI and Sentinel-3 OLCI hold great 

potential to deliver new and improved products for 

inland water quality monitoring. To evaluate the water 

quality in lakes, ecosystem modelers require 

information on the available light in the water column 

as it is one of the major factors determining primary 

production. This light environment is generally 

described in terms of the available Photosynthetically 

Available Radiation (PAR) in the water column, the 

PAR vertical attenuation coefficient (KdPAR) and the 

euphotic depth (Ze) where PAR is reduced to 1% of its 

(just below) surface value. Reliable models to estimate 

KdPAR (and Ze) from remote sensing measurements 

have been successfully demonstrated in marine 

applications using typical ocean colour missions such as 

MERIS-Envisat (300m) and MODIS-AQUA (250-

1000m). Remote sensing reflectance (Rrs) can be used 

to determine Kd and Ze with empirical relationships 

between Kd and ratios (or values) of irradiance 

reflectance. The first algorithms were set up as part of 

the inverse problem, thus giving Kd as a function of the 

blue-to-green ratio of Rrs (Austin and Petzold, 1980; 

Gould and Arnone, 1994; Mueller and Trees, 1997; 

Loisel et al., 2001). In two-step algorithms, Kd is 

related to water constituents which are retrieved from 

Rrs (Morel, 1988; Morel et al., 2007). Generally, these 

types of algorithms are simple and require a minimal 

amount of processing power but they often only apply 

to the type of waters from which they were developed. 

Alternatively, the multiband quasi-analytical algorithm 

(QAA) (Lee et al, 2002) was developed to derive 

absorption and backscattering coefficients by inverting 

spectral Rrs(λ). The absorption and backscatter 

coefficients are subsequently used to estimate Kd (Lee 

et al. 2005a; Lee et al., 2005b, Lee et al., 2007). QAA 

has been successfully demonstrated in marine 

applications using typical ocean colour missions such as 

MERIS-Envisat (300m) and MODIS-AQUA (250-

1000m). 

In this study, we explore the adaptation of a semi-

analytical model for Kd and Ze, developed for the 

MERIS/MODIS sensors and marine water types, to the 

new and upcoming sensors bands (i.e. L8, S2 and S3) 

for inland water cases. The adaptation of the model is 

based on the investigation of the impact of differences 

in the spectral response functions of the considered 

sensors on the models accuracy. 

 

2. Materials and Methods 

2.1. Rrs spectra and Signal Response Functions 

In this study the IOCCG synthetic data set, simulated 

using the widely accepted numerical code HydroLight 

(Mobley, 1995), was used. This dataset contains a total 

of 500 points with both inherent (IOP) and apparent 

(AOP) optical properties. The IOPs (i.e. absorption and 

backscattering coefficients) were generated with various 

available optical/bio-optical parameters/models, while 

AOPs (remote sensing reflectance Rrs, Kd) were 

generated using Hydrolight with the available IOPs (see 

figure 1). It is important to state here that the IOPs 

represent marine water types with chlorophyll a 

concentrations ranging from 0.03µg/l to 30 µg/l in 20 

steps. For each step the absorption coefficients of 

detritus/minerals and Colour Dissolved Organic Matter 

(CDOM) are varied randomly within set constraints. 

This results in a comprehensive data set used for 

algorithm development and testing with IOP and AOP 

values per 10nm in a spectral range of 400nm to 800nm. 

For more details see IOCCG report 5.   

 

 

The Rrs values of this dataset were subsequently 

subsampled using the Spectral Response Functions 



 

(SRF, figure 2) of the L8-OLI and S2-MSI to simulate 

L8 and S2 datasets (Barsi et al, 2014) for the relevant 

bands (i.e. 443nm, 490nm, 560nm, 665nm for S2-MSI 

and 655nm for L8-OLI). No signal-to-noise ratios were 

taken into account when generating the L8-OLI and S2-

MSI datasets. More details of the band characteristics of 

the considered sensors can be found in table 1.  

 

 
Figure 1.Rrs spectra of moderate case 1 water types 

simulated using Hydrolight 

 

 

Characteristics of spectral band set of considered 

sensors are presented in table 1. The IOCCG dataset 

was not resampled for the L3-OLCI sensor as its 

bandwidths are approximately 10 nm, similar to the 

IOCCG dataset. As the SRF of S3-OLCI are quasi 

rectangular, the IOCCG dataset is considered as an 

adequate representation of the S3-OLCI bands and will 

be used as reference for further processing.  

 

 

 

Table 1: Characteristics of spectral band set of 

considered sensors 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.Spectral Response function of the S2-MSI 

(top), L8-OLI (middle) and S3-OLCI (bottom) sensors 

for bands relevant to this study 

 

 

2.2. Quasi-analytical algorithm (QAA) for Kd 

The multi-band QAA is developed to retrieve 

absorption (a) and backscattering (bb) coefficients for 

open and coastal waters from Rrs measurements. In a 

next step a and bb can be used to determine Kd and Ze. 

The algorithm was originally designed for data from 

MERIS and MODIS but can be applied to current and 

future sensors. The basic algorithm consists of five steps 

to calculate the total a and bb from Rrs data for a chosen 

band. Two of these steps are based on empirical 

relationships which are tested in this study for use with 

data from sensors L8-OLI and S2-MSI which are 

originally developed for land applications. The IOCCG 

dataset provides reference material for each of the QAA 

central 

wavelength  

S3-OLCI 

bandwidth 

S2-MSI 

bandwidth 

L8-OLI 

bandwidth 

443nm 10nm 20 nm 16 nm 

490nm 10 nm 65 nm 60 nm 

560nm 10 nm 35 nm 57 nm 

655nm x x 37 nm 

665nm 10 nm 30 nm x 



 

steps enabling a direct calibration of the QAA to data 

from the new sensors. All Rrs datasets (i.e. S3-

reference, S2, and L8) are used as input for the model 

and the output is compared to the reference data. 

  

 
Figure 3.Different steps of the QAA to calculate kd from 

Rrs with the empirical steps highlighted in red. These 

steps are sensitive to the larger bandwidths of the S2-

MSI and L8-OLI sensors 

 

3. Results and Discussion 

3.1. Simulated S2 and L8 Rrs observations 

In the QAA it is necessary to first invert the reflectance 

signal to provide a and bb coefficients which are then 

used to determine the spectral Kd. While the central 

wavelength of the relevant bands do not differ greatly 

between the considered sensors, the SRFs show 

significant differences between the ocean colour sensor 

(S3-OLCI) and the land sensors (S2-MSI and L8-OLI) 

as can be observed in figure 2. The squared shaped 

bands of S3-OLCI are narrow (approx. 10nm) resulting 

in accurate measurements of the central wavelength. 

The bands of the land sensors are wider and irregular 

shaped which results in differences in the measured 

spectral reflection compared to a narrow band system 

like S3-OLCI. Figure 4 shows a direct comparison 

between simulated S2-MSI and L8-OLI and the IOCCG 

dataset which is considered to be representative of the 

S3-OLCI sensor. The 443nm band is slightly 

underestimated for both S2-MSI and L8-OLI bands 

(6.52% and 4.95% respectively) compared to S3-OLCI. 

The 490nm band for S2_MSI underestimates Rrs for 

9.98% and introduces more scatter caused by the wider 

bandwidth and irregular shaped SRF. The L8-OLI 

490nm band results in an underestimation of 4.73% but 

no increased scatter was observed, even with the larger 

bandwidth. This could be explained by the fact that the 

SRF for the 490nm band is not as irregular compared to 

the SE-MSI SRF. The 560nm bands of S2-MSI and L8-

OLI underestimate the Rrs by 1.10% and 3.87% 

respectively. For both bands more scatter is introduced 

which is expected to be a result of a combination of the 

increased bandwidth, SRF shapes and Rrs spectra 

shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Direct comparison of Rrs values between the 

S3-OLCI and S2-MSI/L8-OLI sensors  for the spectral 

bands: 443nm (top), 490nm (middle) and 560nm 

(bottom)  

 

Due to a lack of a 655nm band for S3-OLCI the 

simulated Rrs values for L8-OLI were compared to the 

reference data for that specific band from the IOCCG 

dataset. Figure 5 shows that the Rrs values for L8-OLI 

are 2.44% lower that the IOCGG reference values. A 

direct comparison between S3-OLCI and S2-MSI for 

the 665nm band showed an overestimation of 8.60%. 

While the same IOCCG data set was used to generate 

the simulated datasets for the three considered sensors, 

the results show that the resulting Rrs values show 

differences due to the bandwidth, SRF shapes and Rrs 

spectra shapes of the different sensors. In the next step 

we will investigate how these differences propagate 

through the QAA and eventually influence the final 

products, the Kd and Ze. 

 

3.2. a and bb coefficients from QAA 

Figure 6 shows the a(λ0) and bb(λ0)  calculated using  

equations (1) and (4) for each sensor compared to the 
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Figure 5. Direct comparison of Rrs values between the  

IOCCG dataset and the L8-OLI 655nm band (top) and 

between the S3-OLCI and S2-MSI sensors for the 

665nm band and(bottom).  

 

 

reference values available in the IOCCG dataset. These 

coefficients are subsequently used to calculate the 

spectral coefficients a(λ ) and bbp (λ ) The blue, red and 

black dots represent the results for S3-OLCI, S2-MSI 

and L8-OLI respectively. While the derived a(670) does 

not yield good results, these properties are of second 

order importance, i.e. its inaccuracy does not 

significantly affect the end results. The a(670) values 

for S3-OLCI follow the 1:1 relationship (slope=0.99, 

r²=0.78). The impact of the bandwidth and SRF is 

noticeable as the slope for the a(670) comparison 

deviates more for the land sensors: 1.06 (r²=0.80) for 

S2-MSI and 1.35 (r²=0.80) for L8-OLI. The estimation 

of bbp(670) yields better results for S3-OLCI 

(slope=1.04, r²=0.95). For the land sensors we see an 

increase in the slope: 1.26 (r²=0.96) for S2_MSI and 

1.55 (r²=0.95) for L8. The comparison of the Rrs values 

of the relevant bands (figure 4 and 5) showed that the 

difference in bandwidth and SRF shapes between ocean 

colour and land sensors resulted in changes in the linear 

relationships as well as more variability in the land 

sensor measurements. When propagated through the 

QAA, these differences in Rrs resulted in a different 

slope but with no more variability in the resulting a(λ0) 

and bb(λ0) estimates. This means that correction factors 

can be determined from the difference in slopes in the 

a(670) and bbp(670) relationships to bring the accuracy 

of the estimation of the mentioned coefficients for the 

land sensors to the same level as the ocean colour 

sensors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Spectral Kd 

Spectral Kd is estimated based on coefficients a(λ) and 

bbp(λ) as calculated by the QAA. Figure 7 shows Kd(λ) 

for each sensor compared to the reference values 

available in the IOCCG dataset. The blue, red and black 

dots represent the results for S3-OLCI, S2-MSI and L8-

OLI respectively. For Kd(443) covering a range of 0.02-

4.1m
-1

, the mean absolute percentage errors (MAPE) are 

9.28%, 13.58% and 28.92% for S3-OLCI, S2-MSI and 

L8-OLI respectively. Linear regression slopes are 1.16 

(r²=0.95), 1.29 (r²=0.97) and 1.59 (r²=0.96) for S3-

OLCI, S2-MSI and L8-OLI respectively. For lower 

Kd(443) values (Kd(443 < 2.5m
-1

) the QAA performs 

well using the S3-OLCI dataset but at the high end, 

Kd(443) is overestimated. For land sensors, the MAPE 

increases as a direct result of an increase of slope with a 

minimal decrease of the fit of the linear regression 

(r²=95-97). Similar patterns are observed for Kd(490) 

and Kd(560). While MAPE values for Kd(655) are 

lower at lower wavelengths, the overall variability is 

higher. 

 

 

 

Figure 6. Estimated bbp at 665nm versus reference bbp 

values (x-axis) as available in the IOCCG dataset 

(top).Estimated a at 665nm versus reference a values 

(x-axis) as available in the IOCCG dataset (bottom)   

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. QAA-derived Kd(λ) (i.e. Rrs-derived) versus 

the Kd from the IOCCG dataset.   

 

 

Table 2 presents statistical parameters describing the 

direct comparison between QAA-derived Kd estimates 

and reference values. Based on the IOCCG dataset, the 

slope of linear regression is suggested as the first 

parameter of the correction factor to adapt the QAA-

based Kd estimates to bandsets of S2-MSI and L8-OLI. 

 

 

 

Table 2. Statistical parameters describing the direct 

comparison between QAA-derived Kd estimates and 

reference values. Based on the IOCCG dataset, the 

slope of linear regression is suggested as the correction 

factor to adapt the QAA-based Kd estimates to bandsets 

of S2-MSI and L8-OLI. 

 

 
4. Conclusions 

QAA is a semi-analytical algorithm based on solutions 

of the radiative transfer equation which can be applied 

to different water types, and retrieval accuracy is often 

much better that a straight-forward empirical algorithm. 

To limit time-consuming computations, different steps 

in the QAA are based on empirical relationships. These 

relationships were calibrated using data obtained in 

marine waters (i.e. case 1 and coastal waters) for use 

with narrow band sensors such as MERIS and MODIS. 

With this study we assessed the impact of the broader 

bandwidths of the S2-MSI and L8-OLI sensors on the 

different steps of the QAA. First results showed that in 

terms of spectral Kd estimates, small increases in errors 

(e.g. MAPE) could be observed for the S2-MSI sensor 

for the blue and green bands. In the case of L8-OLI 

these errors were bigger (MAPE > 28%) which we 

assume to be a results of the more irregular shaped 

SRFs. While these errors in Kd estimation increased for 

the land sensors, the regression coefficients did not as 

the comparison between QAA-based spectral Kd and 

reference values resulted in a shift in the slope of the 

linear regression. This shift can easily be used as a 

correction factor for Kd when using data from the land 

sensors making for inland water applications.  

With Hydrolight we are able to expand the synthetic 

data set to extreme turbid or eutrophic conditions which 

can be present in inland water. This will enable us in the 

future to investigate the sensitivity of the QAA in these 

conditions. First results indicate that the sensitivity of 

the QAA decreases in extremely turbid conditions 

(TSM > 100mg/l) and that an additional adaptation of 

the QAA is needed for all sensors including L8-OLI, 

S2-MSI and S3-OLCI. Subsequently, the adapted model 

for KdPAR will be implemented in the numerical water 

quality and biogeochemical model Delft3D WAQ (e.g., 

Los et al., 2008) to investigate the interaction of the 

optical properties with the primary production. 
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