
Chapter 34

Sediment reference manual

34.1 External routines

34.1.1 Allocate Sediment Arrays.f90

allocate sed arrays

SUBROUTINE allocate sed arrays

File
Allocate Sediment Arrays.f90

Type
Subroutine

Purpose
Allocate sediment arrays

Arguments
None

Calling procedures
initialise model

deallocate sed arrays

SUBROUTINE deallocate sed arrays

File
Allocate Sediment Arrays.f90

1463

1464 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Type
Subroutine

Purpose
Deallocate sediment arrays

Arguments
None

Calling procedures
simulation end

34.1.2 Sediment Bottom Fluxes.F90

bottom flux sed

SUBROUTINE bottom flux sed

File
Sediment Bottom Fluxes.f90

Type
Subroutine

Purpose
Bottom sediment flux

Reference
Sections 7.6.3 and 7.7.1

Arguments
None

Called external procedures
bottom stress waves

Calling procedures
sediment advdiff, sediment suspendedload, sediment totalload

bottom stress sed

SUBROUTINE bottom stress sed

File
Sediment Bottom Fluxes.f90

34.1. EXTERNAL ROUTINES 1465

Type
Subroutine

Purpose
Bottom (skin) stress as used in the sediment transport module

Arguments
None

Calling procedures
sediment equation

bottom stress waves

SUBROUTINE bottom stress waves

CHARACTER (LEN=lennode), INTENT(IN):: cnode

File
Sediment Bottom Fluxes.f90

Type
Subroutine

Purpose
Wave-induced bottom stresses

Arguments

cnode grid node where the total stress is evaluated

Calling procedures
bottom flux sed, sediment bedload, sediment totalload

critical shear stress

SUBROUTINE critial shear stress

File
Sediment Bottom Fluxes.f90

Type
Subroutine

Purpose
Critical shear stress

1466 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Reference
Section 7.6.4.2

Arguments
None

Calling procedures
sediment equation

34.1.3 Sediment Density Equations.F90

baroclinic gradient sed cubic

SUBROUTINE baroclinic gradient sed cubic(zcoord,dzx,dzy,dzz,cdir)

CHARACTER (LEN=1) :: cdir

REAL, INTENT(IN), DIMENSION(0:ncloc+1,0:nrloc+1,nz) :: dzx, dzy, dzz

REAL, INTENT(IN), DIMENSION(1-nhalo:ncloc+nhalo,&

& 1-nhalo:nrloc+nhalo,nz) :: zcoord

File
Sediment Density Equations.F90

Type
Subroutine

Purpose
Sediment component of the baroclinic pressure gradient (cube-H method)

Reference
Sections 5.3.13.3 and equation (7.22)

Arguments

zcoord Z-coordinate at W-nodes [m]

dzx Harmonic derivative of the X-coordinate

dzy Harmonic derivative of the Y -coordinate

dzz Harmonic derivative of the Z-coordinate

cdir Direction of the gradient (‘X’, ‘Y’)

Called external procedures
hcube deriv, hcube fluxes

Calling procedures
baroclinic gradient

34.1. EXTERNAL ROUTINES 1467

baroclinic gradient sed sigma

SUBROUTINE baroclinic gradient sed sigma(zcoord,cdir)

CHARACTER (LEN=1), INTENT(IN) :: cdir

REAL, INTENT(IN), DIMENSION(1-nhalo:ncloc+nhalo,&

& 1-nhalo:nrloc+nhalo,nz) :: zcoord

File
Sediment Density Equations.F90

Type
Subroutine

Purpose
Sediment component of the baroclinic pressure gradient (second order
method)

Reference
Sections 5.3.13.1 and equation (7.22)

Arguments

zcoord Z-coordinate array at the W-nodes [m]

cdir Direction of the gradient (‘X’, ‘Y’)

Calling procedures
baroclinic gradient

baroclinic gradient sed z

SUBROUTINE barcolinic gradient sed z(sigint,kint,cdir)

CHARACTER (LEN=1) :: cdir

INTEGER, INTENT(IN), DIMENSION(ncloc,nrloc,2:nz+1,2) :: kint

REAL, INTENT(IN), DIMENSION(ncloc,nrloc,2:nz+1,2) :: sigint

File
Sediment Density Equations.F90

Type
Subroutine

Purpose
Sediment component of the baroclinic density gradient (Z-level method)

1468 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Reference
Sections 5.3.13.2 and equation (7.22)

Arguments

sigint Interpolated sigma coordinates

kint Counter for the interpolated coordinates

cdir Direction of the gradient (‘X’, ‘Y’)

Calling procedures
baroclinic gradient

buoyancy frequency sed

SUBROUTINE buoyancy frequency sed(bgrad)

REAL, INTENT(INOUT), DIMENSION(0:ncloc+1,0:nrloc+1,2:nz) :: bgrad

File
Sediment Density Equations.F90

Type
Subroutine

Purpose
Sediment contribution to the squared buoyancy frequency N2

Reference
Equation (7.20)

Arguments

bgrad (Non-averaged) buoyancy gradient [1/s2]

Calling procedures
buoyancy frequency

equation of state sed

SUBROUTINE equation of state sed

File
Sediment Density Equations.F90

Type
Subroutine

34.1. EXTERNAL ROUTINES 1469

Purpose
Density and expansion coefficients of a water-sediment mixture

Reference
Section 7.2.3

Arguments
None

Calling procedures
equation of state

34.1.4 Sediment Equations.F90

ackerswhite params

SUBROUTINE ackerswhite params(dstar,maskvals,nw,mw,aw,cw)

LOGICAL, INTENT(IN), DIMENSION(1:ncloc,1:nrloc), :: maskvals

REAL, INTENT(INOUT), DIMENSION(1:ncloc,1:nrloc) :: dstar

REAL, INTENT(OUT), DIMENSION(1:ncloc,1:nrloc) :: aw, cw, mw, nw

File
Sediment Equations.F90

Type
Subroutine

Purpose
Parameters for the Ackers & White (1973) formula

Reference
Equation (7.91)

Arguments

dstar Dimensionless particle diameter d∗

maskvals Mask array to exclude dry points

nw, mw, aw, cw Parameters for the Ackers & White (1973) formula

Calling procedures
sediment suspendedload, sediment totalload

1470 CHAPTER 34. SEDIMENT REFERENCE MANUAL

bartnicki filter

SUBROUTINE bartnicki filter(psic,novars,ivarid)

INTEGER,INTENT(IN):: ivarid, novars

REAL, INTENT(INOUT), DIMENSION(1-nhalo:ncloc+nhalo,&

& 1-nhalo:nrloc+nhalo,nz,novars) :: psic

File
Sediment Equations.F90

Type
Subroutine

Purpose
Apply the Bartnicki filter to a scalar field to eliminate negative values

Reference
Section 7.7.4

Arguments

psic C-node scalar quantity [psic]

novars Size of last “variable” dimension

ivarid Key id of psic

Calling procedures
sediment advdiff

bed slope arrays

SUBROUTINE bed slope arrays

File
Sediment Equations.F90

Type
Subroutine

Purpose
Bed slopes at different grid nodes

Arguments
None

Calling procedures
sediment equation

34.1. EXTERNAL ROUTINES 1471

beta factor

SUBROUTINE beta factor

File
Sediment Equations.F90

Type
Subroutine

Purpose
Ratio of sediment diffusivity to eddy viscosity β

Reference
Equation (7.136)

Arguments
None

Calling procedures
sediment advdiff

diff coef waves

SUBROUTINE diff coef waves

File
Sediment Equations.F90

Type
Subroutine

Purpose
Sediment diffusivity including wave effects

Reference
Section 7.6.4.2

Arguments
None

Called external procedures
bottom stress waves

Calling procedures
sediment advdiff

1472 CHAPTER 34. SEDIMENT REFERENCE MANUAL

equilibrium concentration

SUBROUTINE equilibrium concentration

File
Sediment Equations.F90

Type
Subroutine

Purpose
Determine equilibrium concentration ca

Reference
Section 7.6.3

Arguments
None

Called external procedures
equilibrium timescale, sediment suspendedload

Calling procedures
sediment advdiff

equilibrium timescale

SUBROUTINE equilibrium timescale

File
Sediment Equations.F90

Type
Subroutine

Purpose
Determine dimensionless equilibrium time scale Te

Reference
Equations (7.130)–(7.133)

Arguments
None

Calling procedures
equilibrium concentration

34.1. EXTERNAL ROUTINES 1473

median particle diameter

SUBROUTINE median particle diameter

File
Sediment Equations.F90

Type
Subroutine

Purpose
Calculates the median particle diameter d50 from a size distribution

Arguments
None

Calling procedures
sediment equation

sediment advdiff

SUBROUTINE sediment advdiff

File
Sediment Equations.F90

Type
Subroutine

Purpose
Solves the advection-diffusion transport equations for each size fraction

Reference
Section 7.6

Arguments
None

Called external procedures
bartnicki filter, beta factor, bottom flux sed, define profobc spec,
diff coef waves, equilibrium concentration, open boundary conds prof,
settling velocity, transport at C 4d1, transport at C 4d2, up-
date nest data prof, update profobc data

Calling procedures
sediment equation

1474 CHAPTER 34. SEDIMENT REFERENCE MANUAL

sediment bedload

SUBROUTINE sediment bedload

File
Sediment Equations.F90

Type
Subroutine

Purpose
Apply one of the formulations for bed load transport

Reference
Section 7.4

Arguments
None

Called external procedures
bottom stress waves

Calling procedures
sediment equation, sediment totalload

sediment equation

SUBROUTINE sediment equation

File
Sediment Equations.F90

Type
Subroutine

Purpose
Main sediment routine

Reference
Chapter 7

Arguments
None

34.1. EXTERNAL ROUTINES 1475

Called external procedures
bed slope arrays, bottom stress sed, critical shear stress, kine-
matic viscosity, median particle diameter, sediment advdiff, sedi-
ment bedload, sediment totalload

Calling procedures
coherens main, initialise model

sediment suspendedload

SUBROUTINE sediment suspendedload

File
Sediment Equations.F90

Type
Subroutine

Purpose
Apply one of the formulations for suspended load

Reference
Section 7.5

Arguments
None

Called external procedures
ackerswhite params, bottom flux sed, bottom flux sed, thetas-
tar engelund hansen

Calling procedures
equilibrium concentration, sediment equation

sediment totalload

SUBROUTINE sediment totalload

File
Sediment Equations.F90

Type
Subroutine

1476 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Purpose
Apply one of the formulations for total load

Reference
Section 7.5

Arguments
None

Called external procedures
ackerswhite params, bottom flux sed, sediment bedload, settling velocity,
thetastar engelund hansen

Calling procedures
sediment equation

settling velocity

SUBROUTINE settling velocity

File
Sediment Equations.F90

Type
Subroutine

Purpose
Apply one of the formulations for the settling velocity

Reference
Section 7.3.3

Arguments
None

Calling procedures
sediment advdiff, sediment totalload

thetastar engelund hansen

SUBROUTINE thetastar engelund hansen(theta,mask,thetastar)

REAL, INTENT(IN), DIMENSION(ncloc,nrloc) :: theta

REAL, INTENT(OUT), DIMENSION(ncloc,nrloc) :: thetastar

LOGICAL, INTENT(IN), DIMENSION(ncloc,nrloc) :: mask

34.1. EXTERNAL ROUTINES 1477

File
Sediment Equations.F90

Type
Subroutine

Purpose
Computes θ∗ in the Engelund & Hansen (1967) formula

Reference
Equation (7.87)

Arguments

theta Shields parameter

thetastar Modified Shields parameter for Engelund & Hansen (1967)
formula

mask Mask to exclude dry points

Calling procedures
sediment suspendedload, sediment totalload

34.1.5 Sediment Finalisation.f90

write sedics

SUBROUTINE write sedics

File
Sediment Finalisation.f90

Type
Subroutine

Purpose
Write the initial conditions for sediments to a file in standard COHE-
RENS format.

Arguments
None

Calling procedures
coherens main, initialise model

1478 CHAPTER 34. SEDIMENT REFERENCE MANUAL

write sed spec

SUBROUTINE write sed spec

File
Sediment Finalisation.f90

Type
Subroutine

Purpose
Write the particle attributes to a file in standard COHERENS format.

Arguments
None

Calling procedures
initialise model

34.1.6 Sediment Initialisation.f90

exchange sedics

SUBROUTINE exchange sedics

File
Sediment Initialisation.f90

Type
Subroutine

Purpose
Perform exchange communications for sediment arrays, storing the ini-
tial conditions into the respective halos.

Arguments
None

Calling procedures
initialise model

34.1. EXTERNAL ROUTINES 1479

initialise sediment arrays

SUBROUTINE initialise sediment arrays

File
Sediment Initialisation.f90

Type
Subroutine

Purpose
Initialise a series of sediment arrays, not obtained from the initial con-
ditions file.

Arguments
None

Calling procedures
initialise model

read sedics

SUBROUTINE read sedics

File
Sediment Initialisation.f90

Type
Subroutine

Purpose
Read the initial conditions for sediments from a file in standard CO-
HERENS format.

Arguments
None

Calling procedures
initialise model

1480 CHAPTER 34. SEDIMENT REFERENCE MANUAL

read sed spec

SUBROUTINE read sed spec

File
Sediment Initialisation.f90

Type
Subroutine

Purpose
Read the particle attributes from a file in standard COHERENS format.

Arguments
None

Calling procedures
initialise model

34.1.7 Sediment Parameters.f90

assign cif vars sed

SUBROUTINE assign cif vars sed(cname,cvals,numvars)

CHARACTER (LEN=lenname), INTENT(IN), OPTIONAL :: cname

CHARACTER (LEN=lencifvar), INTENT(IN), DIMENSION(MaxCIFvars) :: cvals

INTEGER, INTENT(IN) :: numvars

File
Sediment Parameters.f90

Type
Subroutine

Purpose
Convert a data string from a CIF input line to the appropriate numeri-
cal, logical or character values of the corresponding sediment variables.

Reference
Section 9.4

Arguments

cname Variable name(s)

cvals Data values in string format

34.2. MODULE ROUTINES 1481

numvars Number of sediment variables read from the CIF input line

Calling procedures
read cif params

write cif vars sed

SUBROUTINE write cif vars sed

File
Sediment Parameters.f90

Type
Subroutine

Purpose
Write the CIF for sediment model setup.

Reference
Section 9.4

Arguments
None

Calling procedures
initialise model

34.2 Module routines

34.2.1 check sediments.f90

check sed ics

SUBROUTINE check sedics

File
check sediments.f90

Type
Module subroutine

Purpose
Check initial conditions for sediments, as e.g. defined in usrdef sedics.

1482 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Arguments
None

Calling procedures
initialise model

check sed params

SUBROUTINE check sed params

File
check sediments.f90

Type
Module subroutine

Purpose
Check setup parameters and switches for the sediment model setup, as
e.g. defined in usrdef sed params.

Arguments
None

Calling procedures
initialise model

34.2.1.1 default sediments.f90

default sedics

SUBROUTINE default sedics

File
default sediments.f90

Type
Module subroutine

Purpose
Set the default initial conditions for the sediment model.

Arguments
None

Calling procedures
initialise model

34.2. MODULE ROUTINES 1483

default sed params

SUBROUTINE default sed params

File
default sediments.f90

Type
Module subroutine

Purpose
Default settings of sediment parameters and switches

Arguments
None

Calling procedures
initialise model

34.2.2 reset sediments.f90

reset sedics

SUBROUTINE reset sedics

File
reset sediments.f90

Type
Module subroutine

Purpose
Reset the initial conditions of the sediment model where needed.

Arguments
None

Calling procedures
initialise model

1484 CHAPTER 34. SEDIMENT REFERENCE MANUAL

reset sed params

SUBROUTINE reset sed params

File
reset sediments.f90

Type
Module subroutine

Purpose
Reset the parameters and switches of the sediment model where needed.

Arguments
None

Calling procedures
initialise model

34.2.3 sediment output.f90

define sed0d int2d

SUBROUTINE define sed0d int2d(ivarid,f,out2d)

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT), DIMENSION(ncloc,nrloc) :: out2d

File
sediment output.f90

Type
Module subroutine

Purpose
Define 2-D sediment data for area integrated/averaged output.

Arguments

ivarid Variable key id

f Fraction number (if needed)

out2d Data area as defined on the model grid

Calling procedures
define out0d vals

34.2. MODULE ROUTINES 1485

define sed0d int3d

SUBROUTINE define sed0d int3d(ivarid,f,out3d)

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT), DIMENSION(ncloc,nrloc,nz) :: out3d

File
sediment output.f90

Type
Module subroutine

Purpose
Define 3-D sediment data for area integrated/averaged output.

Arguments

ivarid Variable key id

f Fraction number (if needed)

out3d Data area as defined on the model grid

Calling procedures
define out0d vals

define sed0d vals

SUBROUTINE define sed0d vals(ivarid,f,outdat)

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT) :: outdat

File
sediment output.f90

Type
Module subroutine

Purpose
Define 0-D sediment output data.

Arguments

ivarid Variable key id

f Fraction number (if needed)

outdat Returned output data value

Calling procedures
define out0d vals

1486 CHAPTER 34. SEDIMENT REFERENCE MANUAL

define sed2d int1d

SUBROUTINE define sed2d int1d(ivarid,i,j,f,nzdim,out1d)

INTEGER, INTENT(IN) :: f, i, ivarid, j, nzdim

REAL, INTENT(OUT), DIMENSION(nzdim) :: out1d

File
sediment output.f90

Type
Module subroutine

Purpose
Define sediment data for vertically integrated/averaged output.

Arguments

ivarid Variable key id

i X-index of the output location

j Y-index of the output location

f Fraction number (if needed)

nzdim (Vertical) size of the profile

out1d Returned vertical profile data

Calling procedures
define out2d vals

define sed2d vals

SUBROUTINE define out2d vals(ivarid,i,j,f,outdat)

INTEGER, INTENT(IN) :: f, i, ivarid, j

REAL, INTENT(OUT) :: outdat

File
sediment output.f90

Type
Module subroutine

Purpose
Define 2-D sediment output data at a given location.

Arguments

34.2. MODULE ROUTINES 1487

ivarid Variable key id

i X-index of the output location

j Y-index of the output location

f Fraction number (if needed)

outdat Returned output data

Calling procedures
define out2d vals

define sed3d vals

SUBROUTINE define sed3d vals(ivarid,i,j,k,f,cnode,outdat)

CHARACTER (LEN=lennode), INTENT(IN) :: cnode

INTEGER, INTENT(IN) :: f, i, ivarid, j, k

REAL, INTENT(OUT) :: outdat

File
sediment output.f90

Type
Module subroutine

Purpose
Define 3-D output data at a given location.

Arguments

ivarid Variable key id

i X-index of the output location

j Y-index of the output location

k vertical index of the output location

f Fraction number (if needed)

cnode Defines the vertical node, i.e. ’C’ or ’W’, where a W-node
quantity is evaluated (see Section 20.1.1.1 for details)

outdat Returned output data

Calling procedures
define out2d vals, define out3d vals

1488 CHAPTER 34. SEDIMENT REFERENCE MANUAL

34.2.4 sedvars routines.f90

inquire sedvar

SUBROUTINE inquire sedvar(varid,f90 name,long name,units,node,vector name,&

& data type,nodim,shape,dom dims,halo size,varatts)

CHARACTER (LEN=lenname), INTENT(OUT) :: f90 name

CHARACTER (LEN=lendesc), INTENT(OUT) :: long name, vector name

CHARACTER (LEN=lenunit), INTENT(OUT) :: units

CHARACTER (LEN=lennode), INTENT(OUT) :: node

INTEGER, INTENT(IN) :: varid

INTEGER, INTENT(OUT) :: data type, nodim

INTEGER, INTENT(OUT), DIMENSION(4) :: dom dims, halo size, shape

TYPE (VariableAtts), INTENT(OUT) :: varatts

File
sedvars routines.f90

Type
Module subroutine

Purpose
Returns attributes of a sediment array variable given its variable key
id.

Arguments

varid Variable key id

f90 name Returned FORTRAN 90 name attribute

long name Returned long name attribute

units Returned units attribute

node Returned grid node where the variable is defined on the
model grid

vector name Returned vector name attribute

data type Returned data type attribute

nodim Returned array rank

shape Returned array shape

dom dims Returned array shape without halo

halo size Returned halo sizes

varatts Variable attributes returned as a variable of type Vari-
ableAtts

34.2. MODULE ROUTINES 1489

Calling procedures
inquire var

set sedfiles atts

SUBROUTINE set sedfiles atts(iddesc,ifil,iotype)

INTEGER, INTENT(IN) :: iddesc, ifil, iotype

File
sedvars routines.f90

Type
Module subroutine

Purpose
Define the global attributes of a forcing file for the sediment model.

Arguments

iddesc Forcing file key id

ifil File number of the forcing file

iotype I/O type of the forcing file

1: Input file

2: Output file

Calling procedures
set modfiles atts

set sedvars atts

SUBROUTINE set sedvars atts(iddesc,ifil,ivarid,nrank,nshape,numvarsid,novars)

INTEGER, INTENT(IN) :: iddesc, ifil, novars

INTEGER, INTENT(OUT), DIMENSION(novars) :: ivarid, nrank, numvarsid

INTEGER, INTENT(OUT), DIMENSION(novars,4) :: nshape

File
sedvars routines.f90

Type
Module subroutine

Purpose
Define the variable attributes of a forcing file for the sediment model.

1490 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Arguments

iddesc Forcing file key id

ifil File number of the forcing file

ivarid Returned variable key idids

nrank Returned variable ranks

nshape Returned variable shapes

numvarsid Returned variable indices in case the last dimension is a
variable dimension, undefined otherwise

novars Number of variables (coordinate plus data) in the forcing
file

Calling procedures
set modvars atts

34.3 User defined routines

34.3.1 Usrdef Sediment.f90

usrdef sed params

SUBROUTINE usrdef sed params

File
Usrdef Sediment.f90

Type
Subroutine

Purpose
Define switches and parameters for the sediment model.

Arguments
None

Calling procedures
initialise model

34.4. SEDIMENT MODEL VARIABLES 1491

usrdef sedics

SUBROUTINE usrdef sedics

File
Usrdef Sediment.f90

Type
Subroutine

Purpose
Define initial conditions for the sediment model.

Arguments
None

Calling procedures
initialise model

usrdef sed spec

SUBROUTINE usrdef sed spec

File
Usrdef Sediment.f90

Type
Subroutine

Purpose
Define particle attributes for the sediment fractions.

Arguments
None

Calling procedures
initialise model

34.4 Sediment model variables

34.4.1 Sediment arrays

REAL, ALLOCATABLE, DIMENSION(:) :: dp, rhos, tau cr cst, ws cst

REAL, ALLOCATABLE, DIMENSION(:,:) :: bdragcoefatc sed, bdragcoefatu sed, &

1492 CHAPTER 34. SEDIMENT REFERENCE MANUAL

& bdragcoefatv sed, bed_slope x, bed_slope x atu, bed_slope x atv, &

& bed slope_y, bed slope y atu, bed slope y atv, bstresatc sed, &

& bstresatc wav, bstresatu wav, bstresatv wav, d50 bed, ubstresatc sed, &

& ubstresatu sed, ubstresatv sed, vbstresatc sed, vbstresatu sed, &

& vbstresatv sed, zroughatc sed, zroughatu sed, zroughatv sed

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: bed fraction, beta sed, &

& bottom sed flux, ceq, cref, ctot, height c, qbedatu, qbedatv, &

& qsusatc, qtotatu, qtotatv, tau cr, t equil

INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: cell layer

REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: beta state sed, cvol, sedsrcuser, &

& obcsedatu, obcsedatv

& vdiffcoef_sed, wfall

File
sedarrays.f90

Type
Module

Purpose
Sediment arrrays

Description

bdragcoefatc sed Bottom drag coefficient at the C-nodes using skin
roughness

bdragcoefatu sed Bottom drag coefficient at the U-nodes using skin
roughness

bdragcoefatv sed Bottom drag coefficient at the V-nodes using skin
roughness

bed fraction Fractional amounts of sediments at the sea bed (be-
tween 0 and 1)

bed slope x Bed slope in the X-direction at the C-nodes

bed slope x atu Bed slope in the X-direction at the U-nodes

bed slope x atv Bed slope in the X-direction at the V-nodes

bed slope y Bed slope in the Y-direction at the C-nodes

bed slope y atu Bed slope in the Y-direction at the U-nodes

bed slope y atv Bed slope in the Y-direction at the V-nodes

34.4. SEDIMENT MODEL VARIABLES 1493

beta sed Ratio between sediment eddy diffusivity and eddy vis-
cosity β

beta state sed Expansion factor βc in equation of state (per sediment
fraction) [m3/m3]

bottom sed flux Upward net sediment flux at the sea bed E −D per
fraction [m/s]

bstresatc sed Bed shear stress using skin roughness at the C-nodes
[m2/s2]

bstresatc wav Bed shear stress due to wave effects at the C-nodes
[m2/s2]

bstresatu wav Bed shear stress due to wave effects at the U-nodes
[m2/s2]

bstresatv wav Bed shear stress due to wave effects at the V-nodes
[m2/s2]

cell layer The vertical layer (cell) for applying the bottom sedi-
ment flux

ceq Equilibrium sediment concentration ceq (per fraction)
[m3/m3]

cref Near bed reference sediment concentration ca (at height c)
per fraction [m3/m3]

ctot Volumetric sediment concentration (sum over all frac-
tions) [m3/m3]

cvol Volumetric sediment concentration c (per sediment
fraction) [m3/m3]

dp Particle diameter d [m]

d50 bed Median grain size (by mass) d50 at the sea bed [m]

height c The elevation a at which the near bed boundary con-
ditions is applied (per fraction) [m]

obcsedatu Storage array for sediment concentrations in case the
open boundary conditions at the U-nodes require the
solution of a differential equation in time

obcsedatv Storage array for sediment concentrations in case the
open boundary conditions at the V-nodes require the
solution of a differential equation in time

qbedatu Bed load qb1 (per sediment fraction) in the X-direction
at the U-nodes [m2/s]

1494 CHAPTER 34. SEDIMENT REFERENCE MANUAL

qbedatv Bed load qb1 (per sediment fraction) in the Y-direction
at the V-nodes [m2/s]

qsusatc Suspended load qs (per sediment fraction) at the C-
nodes [m2/s]

qtotatu Total load qt1 (per sediment fraction) in the X-direction
at the U-nodes [m2/s]

qtotatv Total load qt2 (per sediment fraction) in the Y-direction
at the V-nodes [m2/s]

rhos Particle density ρs [kg/m3]

sedsrcuser Sediment source defined by the user (per sediment
fraction) [m3/s]

tau cr Critical bed shear stress τcr (per sediment fraction)
[m2/s2]

tau cr cst Spatially uniform critical shear stress τcr per fraction
[m2/s2]

t equil Non-dimensional equilibrium time scale Te (per frac-
tion)

ubstresatc sed X-component of the skin bed shear stress at the C-
nodes [m2/s2]

ubstresatu sed X-component of the skin bed shear stress at the U-
nodes [m2/s2]

ubstresatv sed X-component of the skin bed shear stress at the V-
nodes [m2/s2]

vbstresatc sed Y-component of the skin bed shear stress at the C-
nodes [m2/s2]

vbstresatu sed Y-component of the skin bed shear stress at the U-
nodes [m2/s2]

vbstresatv sed Y-component of the skin bed shear stress at the V-
nodes [m2/s2]

vdiffcoef sed Vertical eddy diffusivity DV for sediment (per frac-
tion) [m2/s]

wfall Settling velocity ws (per sediment fraction) [m/s]

ws cs Spatially uniform settling velocity ws per fraction [m/s]

zroughatc sed Skin roughness length at the C-nodes [m]

zroughatu sed Skin roughness length at the U-nodes [m]

zroughatv sed Skin roughness length at the V-nodes [m]

34.4. SEDIMENT MODEL VARIABLES 1495

34.4.2 Key ids of sediment variables

MODULE sedids

!---start key id number

INTEGER, PARAMETER, PRIVATE :: n0 = MaxModArids

!---sediment particle attributes

INTEGER, PARAMETER :: &

& iarr dp = n0+1, iarr rhos = n0+2, iarr tau cr cst = n0+3,

....

File
sedids.f90

Type
Module

Purpose
Definitions of key ids for sediment variables. The key id name has the
form iarr ? where ? is the FORTRAN name of the variable.

34.4.3 Sediment model parameters

REAL, PARAMETER :: beta sed max = 1.5, beta sed min = 1.0

INTEGER:: maxitbartnicki = 100, nf = 1, nrquad sed = 7, nrquad wav = 10

REAL :: alpha VR = 2.19, a leussen = 0.02, beta sed cst = 1.0, &

& b leussen = 0.0024, cgel = 0.0, cmax = 0.65, coef bed grad = 1.3, &

& floc VR max = 10.0, floc VR min = 1.0, height c cst = 0.01, &

& maxRV = 0.1, minRV = 1.0E-05, n RichZaki = 4.6, parth coef = 1.0E-08, &

& parth exp = 1.0, wu exp = -0.6, zrough sed cst, z0 coef = 30.0

File
sedarrays.f90

Type
Module

Purpose
Sediment arrrays

Description

alpha VR Exponent α in the flocculation equation (7.48) by Van Rijn
(2007b)

1496 CHAPTER 34. SEDIMENT REFERENCE MANUAL

a leussen Coefficient a in the (7.46) flocculation equation by Van Leussen
(1994) [s]

beta sed cst Constant value of the eddy diffusivity to viscosity ratio
as used in equation (7.136) if iopt sed beta=2

beta sed max Maximum value for the ratio β of sediment diffusivity
to eddy viscosity

beta sed min Minimum value for the ratio β of sediment diffusivity to
eddy viscosity

b leussen Coefficient b in the (7.46) flocculation equation by Van Leussen
(1994) [s2]

cgel Volumetric gelling concentration used for hindered set-
tling of mud and flocculation [m3/m3]

cmax Volumetric maximum concentration for sand at the sea
bed used in equations (7.104), (7.114) for total load and
for calulating the reference concentration in the Smith
& McLean (1977) formula (7.124) [m3/m3]

coef bed grad Coefficient βs used in the bed slope formula (7.83) of
Koch & Flokstra (1981)

floc VR max Maximum value for the flocculation factor φloc in equa-
tion (7.48) by Van Rijn (2007b)

floc VR min Minimum value for the flocculation factor φloc in equa-
tion (7.48) by Van Rijn (2007b)

height c cst Constant reference height a (normalised by the water
depth) if iopt sed bbc=0

maxitbartnicki Maximum number of iterations used by the bartnicki
filter

maxRV Maximum value for the reference height a (normalised
by the water depth)

minRV Minimum value for the reference height a (normalised
by the water depth)

nf Number of sediment fractions

nrquad sed Number of vertical locations used by the Gauss-Legendre
numerical integration scheme for depth averaging of se-
diment (equilibrium) sediment profiles

nrquad wav Number of time steps used by the Gauss-Legendre nu-
merical integration scheme for phase-averaging over a
wave period

34.4. SEDIMENT MODEL VARIABLES 1497

n RichZaki Exponent n in equation (7.43) for hindered settling by
Richardson & Zaki (1954)

parth coef Coefficient M in the formulation (7.126) for erosion of
mud by Partheniades (1965) [m/s]

parth exp Exponent np in the formulation (7.126) for erosion of
mud by Partheniades (1965)

wu exp Exponent m used to calculate the hiding factor (7.36)
in the Wu et al. (2000) formulation

zrough sed cst Uniform roughness length used to obtain the (skin) bed
stress if iopt sed tau=2 [m]

z0 coef Factor by which z0 is multiplied to determine the min-
imum depth for averaging used in the boundary condi-
tion at the sea bed in the EFDC method (iopt sed bbc type
= 2 or 3)

34.4.4 Sediment switches

!---on-off

INTEGER :: iopt sed mode = 2, iopt sed nodim = 3, iopt sed type = 2

!---type of equation

INTEGER :: iopt sed bedeq = 1, iopt sed ceqeq = 1, &

& iopt sed dens = 0, iopt sed toteq = 1

!---suspended sediment transport

INTEGER :: iopt sed bbc= 1, iopt sed beta = 1, iopt sed wave diff = 0

!---settling velocity

INTEGER :: iopt sed floc = 0, iopt sed hindset = 0, iopt sed vadv = 3, &

& iopt sed ws = 1

!---bed load

INTEGER :: iopt sed eha = 1, iopt sed hiding = 0, iopt sed median = 1, &

& iopt sed slope = 0, iopt sed tau = 1, iopt sed taucr = 1

!---numerical

INTEGER :: iopt sed bbc type = 3, iopt sed filter = 0

File
sedarrays.f90

Type
Module

Purpose
Sediment arrrays

1498 CHAPTER 34. SEDIMENT REFERENCE MANUAL

Description

iopt sed bbc Type of boundary condition at the sea bed.

0: no bed boundary conditions (no flux to and from
the bed)

1: using reference concentration (7.124) from Smith
& McLean (1977)

2: using reference concentration from (7.125) Van Rijn
(1984a)

3: deposition taken as an advective flux at the bot-
tom, erosion parameterised using equation (7.126)
from Partheniades (1965)

iopt sed bbc type Selects the method to transpose the near bed boun-
dary condition to the computational grid (see Sec-
tion 7.7.1.1). It is strongly recommended not to
change the default value.

1: EFDC method applied to lowest cell (not recom-
mended)

2: EFDC method applied to the first the cell above
the bottom (not recommended)

3: using the Rouse profile

iopt sed bedeq Type of formulation for bed load transport.

1: Meyer-Peter & Müller (1948)

2: Engelund & Fredsøe (1976)

3: Van Rijn (1984b)

4: Wu et al. (2000)

5: Soulsby (1997). This equation includes wave ef-
fects.

6: Van Rijn (2003). This formula includes wave ef-
fects.

7: Van Rijn (2007a). This method includes wave ef-
fects.

iopt sed beta The type of equation used for β, the ratio between
the eddy viscosity and eddy diffusivity.

1: β = 1

2: β is defined by the user (parameter beta cst).

34.4. SEDIMENT MODEL VARIABLES 1499

3: Van Rijn (1984b) formulation (7.136)

iopt sed ceqeq The type of model for determining the equilibrium
sediment concentration used to evaluate the sediment
flux at the sea bed for 2-D sand transport.

1: numerical integration of the Rouse profile

2: using qt/U determined with the equation of En-
gelund & Hansen (1967). The precise form is also
determined by the switch iopt sed eha.

3: using qt/U using the formulation by Ackers &
White (1973)

4: using qs/U using the formulation by Van Rijn
(2003). This formulation is very similar to Van Rijn
(1984b), but takes wave stresses into account.

5: Using qs/U and the method of Wu et al. (2000).

iopt sed dens Disables (0) or enables (1) effects of sediments in the
equation of state and density stratification.

iopt sed eha Switch to select the type of formulation in the En-
gelund & Hansen (1967) total load formula. (7.86).

1: original form

2: Chollet & Cunge (1979) form as function of θ∗

iopt sed filter The type of filter used to prevent the occurrence of
negative concentrations.

0: no filter

1: Bartnicki (1989) filter.

iopt sed floc Type of flocculation factor for the settling velocity.

0: flocculation effect disabled

1: Van Leussen (1994) equation (7.46)

2: Van Rijn (2007b) equation (7.48)

3: combination of the two previous methods

iopt sed hiding Type of formulation for the hiding factor.

0: hiding disabled

1: Wu et al. (2000) equation (7.36)

2: Ashida & Michiue (1972) equation (7.37)

1500 CHAPTER 34. SEDIMENT REFERENCE MANUAL

iopt sed hindset Type of formulation for hindered settling.

0: hindered settling disabled

1: Richardson & Zaki (1954) equation (7.43)

2: Winterwerp & van Kesteren (2004) formula (7.44)

iopt sed median Method for calculating the median size d50 at the sea
bed.

1: no interpolation

2: linear interpolation (not recommended, especially
for a low number of fractions)

iopt sed mode Type of mode for applying the sediment transport
model.
1: bedload transport only computed by a formula,

which is determined by iopt sed bedeq

2: suspended load transport only (computed with
the advection-diffusion equation)

3: bedload and suspended transport (i.e. option 1
and 2 together)

4: total load transport computed with a formula,
which is determined by iopt sed toteq

iopt sed nodim Type of grid mode for the sediment transport.

2: depth averaged transport1

3: 3-D sediment transport

iopt sed slope Bed slope effects for bed load.

0: bed slope effects disabled

1: bed slope effect effects enabled and using the Koch
& Flokstra (1981) formulation for bed load

iopt sed tau Type of roughness length formulation for sediments.

1: the same as for the hydrodynamics

2: used-defined constant roughness length zrough sed cst

3: user-defined spatially non-uniform value

iopt sed taucr Selects type of method for the critical shear stress.

1: user-defined value for each fraction

1Note that iopt sed nodim is always set to 2 if iopt grid nodim = 2.

34.4. SEDIMENT MODEL VARIABLES 1501

2: Brownlie (1981) equation (7.31)

3: Soulsby & Whitehouse (1997) equation (7.32)

4: Wu et al. (2000) equation (7.33)

iopt sed toteq Type of method for total load transport.

1: Engelund & Hansen (1967). The precise form is
also determined by the switch iopt sed eha.

2: Ackers & White (1973)

3: Madsen & Grant (1976). This equation includes
wave effects.

4: Wu et al. (2000). Total load is calculated as the
sum of suspended and bed load.

5: Van Rijn (2003). This equation includes wave ef-
fects and total load is the sum of suspended and
bed load.

6: Van Rijn (2007a). This equation includes wave
effects and total load is the sum of suspended and
bed load.

iopt sed type Type of sediment.

1: sand (non-cohesive)

2: mud (cohesive)

iopt sed vadv Disables (0), enables (>0) vertical settling of sedi-
ments and selects the type of numerical advection
scheme if>0 and vertical advection for (non-sediment)
scalars is disabled (iopt adv scal=0). If iopt adv scal>0,
then either iopt sed vadv=0 or set equal to iopt adv scal.

iopt sed wave diff Selects the turbulent diffusion coefficient due to waves.

0: no diffusion coefficient

1: according to Van Rijn (2007b)

iopt sed ws Type of method for the settling velocity.

1: user-defined value for each fraction

2: Camenen (2007) formulation (7.39) for sand

3: Camenen (2007) formulation (7.39) for mud

4: Stokes formula (7.40)

5: Soulsby (1997) formula (7.41)

6: Zhang & Xie (1993) equation (7.42)

1502 CHAPTER 34. SEDIMENT REFERENCE MANUAL

34.5 Interfaces

A series of “generic” routines for sediment transport are called from the
physical (“main”) part of COHERENS. If the user wants to couple COHERENS
with an alternative sediment module, different from the one in COHERENS,
the user must provide these routines. Empty routines, with only a declaration
part of arguments are allowed. A complete list is given below.

The routine declarations are given below without further explanation.
Further details about the meaning of the routine and arguments are found
in this chapter.

34.5.1 External routine interfaces

SUBROUTINE allocate sed arrays

! Allocate sediment arrays

...

END SUBROUTINE allocate sed arrays

SUBROUTINE assign cif vars sed(iddesc,cname,cvals,numvars)

! convert data strings from the sediment CIF to the format (numeric or

! non-numeric) in COHERENS

CHARACTER (LEN=lenname), INTENT(IN), OPTIONAL :: cname

CHARACTER (LEN=lencifvar), INTENT(IN), DIMENSION(MaxCIFvars) :: cvals

INTEGER, INTENT(IN) :: iddesc, numvars

...

END SUBROUTINE assign cif vars sed

SUBROUTINE baroclinic gradient sed cubic(zcoord,dzx,dzy,dzz,cdir)

! sediment contribution for the baroclinic

! density gradient (cube-H method)

CHARACTER (LEN=1) :: cdir

REAL, DIMENSION(0:ncloc+1,0:nrloc+1,nz), INTENT(IN) :: dzx, dzy, dzz

REAL,DIMENSION(1-nhalo:ncloc+nhalo,&

& 1-nhalo:nrloc+nhalo,nz), INTENT(IN) :: zcoord

...

END SUBROUTINE baroclinic gradient sed cubic

SUBROUTINE baroclinic gradient sed sigma(zcoord,cdir)

! sediment contribution for the baroclinic

! density gradient (sigma second order method)

CHARACTER (LEN=1) :: cdir

34.5. INTERFACES 1503

REAL,DIMENSION(1-nhalo:ncloc+nhalo,&

& 1-nhalo:nrloc+nhalo,nz), INTENT(IN) :: zcoord

...

END SUBROUTINE baroclinic gradient sed sigma

SUBROUTINE baroclinic gradient sed z(sigint,kint,cdir)

! sediment contribution for the baroclinic

! density gradient (z-level method)

CHARACTER (LEN=1) :: cdir

INTEGER, DIMENSION(ncloc,nrloc,2:nz+1,2), INTENT(IN) :: kint

REAL, DIMENSION(ncloc,nrloc,2:nz+1,2), INTENT(IN) :: sigint

...

END SUBROUTINE baroclinic gradient sed z

SUBROUTINE buoyancy frequency sed(bgrad)

! sediment contribution to the squared buoyancy frequency

REAL, DIMENSION(0:ncloc+1,0:nrloc+1,2:nz), INTENT(INOUT) :: bgrad

...

END SUBROUTINE buoyancy frequency sed

SUBROUTINE deallocate sed arrays

! deallocate sediment arrays

...

END SUBROUTINE deallocate sed arrays

SUBROUTINE equation of state sed

! sediment contribution to density, sediment expansion coefficient

...

END SUBROUTINE equation of state sed

SUBROUTINE exchange sedics

! exchange the sediment arrays defined by the sediment initial conditions

...

END SUBROUTINE exchange sedics

SUBROUTINE initialise sediment arrays

! initialise sediment model

...

END SUBROUTINE initialise sediment arrays

SUBROUTINE read sedics

1504 CHAPTER 34. SEDIMENT REFERENCE MANUAL

! read the initial conditions for the sediment model from

! a file in standard COHERENS format

...

END SUBROUTINE read sedics

SUBROUTINE read sed spec

! read sediment specifiers (particle attributes) from

! a file in standard COHERENS format

...

END SUBROUTINE read sed spec

SUBROUTINE sediment equation

! main unit of the sediment transport model

...

END SUBROUTINE sediment equation

SUBROUTINE write cif vars sed

! write the sediment CIF

...

END SUBROUTINE write cif vars sed

SUBROUTINE write sedics

! write the initial conditions for the sediment model to

! a file in standard COHERENS format

...

END SUBROUTINE write sedics

SUBROUTINE write sed spec

! write sediment specifiers (particle attributes) to

! a file in standard COHERENS format

...

END SUBROUTINE write sed spec

34.5.2 Module routine interfaces

MODULE check sediments

! check sediment model parameters and arrays for errors

CONTAINS

SUBROUTINE check sedics

! check initial conditions in the sediment model

34.5. INTERFACES 1505

...

END SUBROUTINE check sedics

SUBROUTINE check sed params

! check sediment switches and parameters

...

END SUBROUTINE check sed params

END MODULE check sediments

MODULE default sediments

! default settings for the sediment model

CONTAINS

SUBROUTINE default sedics

! default initial conditions in the sediment model

...

END SUBROUTINE default sedics

SUBROUTINE default sed params

! default settings for sediment switches and parameters

...

END SUBROUTINE default sed params

END MODULE default sediments

MODULE reset sediments

! reset sediment parameters and arrays where needed

CONTAINS

SUBROUTINE reset sedics

! reset initial conditions in the sediment model

...

END SUBROUTINE reset sedics

SUBROUTINE reset sed params

! reset sediment switches and parameters

...

END SUBROUTINE reset sed params

END MODULE reset sediments

MODULE sediment output

! routines for sediment user output data

CONTAINS

SUBROUTINE define sed0d int2d(ivarid,f,out2d)

! define 2-D sediment data for area integrated/averaged output

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT), DIMENSION(ncloc,nrloc) :: out2d

1506 CHAPTER 34. SEDIMENT REFERENCE MANUAL

...

END SUBROUTINE define sed0d int2d

SUBROUTINE define sed0d int3d(ivarid,f,out3d)

! define 3-D sediment data for area integrated/averaged output

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT), DIMENSION(ncloc,nrloc,nz) :: out3d

...

END SUBROUTINE define sed0d int3d

SUBROUTINE define sed0d vals(ivarid,f,outdat)

! define 0-D sediment output data

INTEGER, INTENT(IN) :: f, ivarid

REAL, INTENT(OUT) :: outdat

...

END SUBROUTINE define sed0d vals

SUBROUTINE define sed2d int1d(ivarid,i,j,f,nzdim,out1d)

! define sediment data for vertically integrated/averaged output

INTEGER, INTENT(IN) :: f, i, ivarid, j, nzdim

REAL, INTENT(OUT), DIMENSION(nzdim) :: out1d

...

END SUBROUTINE define sed2d int1d

SUBROUTINE define sed2d vals(ivarid,i,j,f,outdat)

! define 2-D sediment output data at a given location

INTEGER, INTENT(IN) :: f, i, ivarid, j

REAL, INTENT(OUT) :: outdat

...

END SUBROUTINE define sed2d vals

SUBROUTINE define sed3d vals(ivarid,i,j,k,f,cnode,outdat)

! define 3-D output data at a given location

CHARACTER (LEN=lennode) :: cnode

INTEGER, INTENT(IN) :: f, i, ivarid, j, k

REAL, INTENT(OUT) :: outdat

...

END SUBROUTINE define sed3d vals

END MODULE sediment output

MODULE sedvars routines

! attributes of sediment variables and forcing files

CONTAINS

SUBROUTINE inquire sedvar(varid,f90 name,long name,units,node,vector name,&

& data type,nodim,shape,dom dims,halo size,varatts)

! returns attributes of a sediment array variable given its

34.5. INTERFACES 1507

! variable key id

CHARACTER (LEN=lenname), INTENT(OUT), OPTIONAL :: f90 name

CHARACTER (LEN=lendesc), INTENT(OUT), OPTIONAL :: long name, vector name

CHARACTER (LEN=lenunit), INTENT(OUT), OPTIONAL :: units

CHARACTER (LEN=*), INTENT(OUT), OPTIONAL :: node

INTEGER, INTENT(IN) :: varid

INTEGER, INTENT(OUT), OPTIONAL :: data type, nodim

INTEGER, INTENT(OUT), OPTIONAL, DIMENSION(4) :: dom dims, halo size, shape

TYPE (VariableAtts), INTENT(OUT), OPTIONAL :: varatts

...

END SUBROUTINE inquire var

SUBROUTINE set sedfiles atts(iddesc,ifil,iotype)

! global attributes of a forcing file in the sediment model

INTEGER, INTENT(IN) :: iddesc, ifil, iotype

...

END SUBROUTINE set sedfiles atts

SUBROUTINE set sedvars atts(iddesc,ifil,ivarid,nrank,nshape,numvarsid,novars)

! variable attributes of a forcing file in the sediment model

INTEGER, INTENT(IN) :: iddesc, ifil, novars

INTEGER, INTENT(OUT), DIMENSION(novars) :: ivarid, nrank, numvarsid

INTEGER, INTENT(OUT), DIMENSION(novars,4) :: nshape

...

END SUBROUTINE set sedvars atts

END MODULE sedvars routines

34.5.3 User defined routines

SUBROUTINE usrdef sed params

! define parameters and switches for the sediment model

...

END SUBROUTINE usrdef sed params

SUBROUTINE usrdef sedics

! define intitial conditions for the sediment model

...

END SUBROUTINE usrdef sedics

SUBROUTINE usrdef sed spec

! define particle properties in the sediment model

...

END SUBROUTINE usrdef sed spec

1508

COHERENS

A Coupled Hydrodynamical-Ecological Model
for Regional and Shelf Seas

Release Notes

Last update: August, 2013

Patrick Luyten

Royal Belgian Institute of Natural Sciences (RBINS-MUMM)
Gulledelle 100, 1200 Brussels, Belgium

Version V2.0

Coherens Version : V2.0
previous release : V1 (release 8.4)
Revision : 113
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.0
Date of release : 2010-10-04
File (code) : coherensV20 r109.tar.gz
File (manual) : manualV20 r124.pdf

Description

This version represents a full update of the first version of coherens, released
in April 2000 (more than ten years ago). Most important changes are:

1. The code is re-written in FORTRAN 90.

2. Implementation of parallelisation using the MPI message MPI library
(available as an option).

3. Options for curvilinear grids in the horizontal and generalised σ-coordinates
in the vertical.

4. One-way nesting

5. Standard formats (including netCDF) for forcing and user-defined out-
put

6. ”Usrdef” files where the user can define all model setup.

7. Improvement of numerical schemes:

• baroclinic pressure gradients

• additional types of open and surface boundary conditions

• additional turbulence schemes

1

8. A drying/wetting algorithm.

9. Possibility to run the model in 1-D (water column), 2-D (depth-averaged
mode) and 3-D mode

10. Forcing data can be read from several files with different time resolu-
tion.

11. Possibility to launch different simulation within one run.

12. The user can specify different times within the simulation period when
initial conditions are written for eventual re-starts of the program.

Model code

See Coherens V2.0 User Manual

User instructions

See Coherens V2.0 User Manual

2

Version V2.1.0

Coherens Version : V2.1.0
previous release : V2.0
Revision : 139
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.1.0
Date of release : 2010-11-10
File (code) : coherensV210 r136.tar.gz
File (manual) : in preparation

Implementations

1. A new optional utility, called the CIF (“Central Input File”) has been
implemented, which can be considered as an extension of the namelist
file utility. The aim is to define all model setup parameters by reading
the CIF instead of calling a usrdef routine.

• Parameters can be re-set by editing the CIF without re-programming
the usrdef routines.

• The following routines are no longer called if the CIF option is
selected.

usrdef parallel, usrdef init params, usrdef mod params,

usrdef tsr params, usrdef avr params, usrdef anal freqs,

usrdef anal params

• The CIF can be created by the user as an ASCII file or be gener-
ated by the program itself.

• The syntax of the file is described below.

2. Forcing parameters and data, defined in a usrdef routine, can be writ-
ten to a file in standard COHERENS format. Although the utility was

3

already available in the previous version, a series of program bugs had
to be removed. The utility has been fully tested.

• The output file is created and written (eventually over-written) if
the status file attribute is set to ‘W’, i.e. modfiles(idesc,ifil,2)%status=‘W’

• The following usrdef calls can be made redundant in this way

usrdef partition, usrdef phsics, usrdef 1dsur spec,

usrdef 2dobc spec, usrdef profobc spec, usrdef 1dsur data,

usrdef 2dobc data, usrdef profobc data, usrdef rlxobc spec,

usrdef surface absgrd, usrdef surface relgrd, usrdef surface data,

usrdef nstgrd spec, usrdef surface nstgrd abs,

usrdef surface nstgrd rel

3. The routine usrdef parallel has been removed. The three parameters,
which could previously be defined in this routines, are now defined as
follows

parallel set The parameter is automatically set to .TRUE. if the com-
piler option -DMPI is added in options.cpp, and to .FALSE.
otherwise. In that case MPI will be initialised and finalised.
For a parallel run the parameter nprocs must take a value
greater than 1.

shared read Shared reading by all processes is now taken as .TRUE. This
means that the parameter (and its opposite noshared read)
are longer needed and they are therefore removed from
the code. As a consequence all copy operations have been
deleted in the source code. Details are given below.

idmaster The parameter is now defined in usrdef mod params (or in
the CIF).

Instructions for users

The defruns file

Three parameters are read from each line of the defruns, separated by a ‘,’.
The general systax is

runtitle,status,filename

where

4

runtitle The title of the simulation which has the same meaning as before

status The status of the CIF

‘0’ The CIF utility is switched off (both for reading and writing).
This is the default condition.

‘R’ Model setup parameters are read from a CIF.

‘W’ Model setup parameters are written to a CIF.

filename Name of the CIF file. If not given, the default name TRIM(runtitle)//‘.cifmodA’
is taken. This parameter is obviously not used if status equals ‘0’

Defaults are taken (except for runtitle which must always be given) when the
value is an empty string, one blank or several blanks. All blanks are ignored
on the input line.

Consider the following example

conesA,,

conesA,R,

conesA,W,myciffile

The first line initiates the run conesA without CIF, the second one reads the
setup from the file conesA.cifmodA, the third writes the CIF data to the file
myciffile.

Lines can be commented if the first character is a ‘!’. This replaces, for
compatibility with the CIF syntax below, the ‘#’ character used in previous
versions.

The CIF file

syntax of a CIF

As shown in the example below, each data line in the CIF has the following
syntax

varname = value 1, value 2, ..., value n

where varname is the FORTRAN name of a model parameter and value 1
to value n are the input values of the parameter, separated by the data
separator ‘,’. The file is read line-wise. The data strings value 1, value 2,
. . . are converted to the appropriate (numeric, logical, character) data format
associated with the variable FORTRAN variable varname. The following rules
apply

5

• If a comment character ‘!’ appears in the string, all characters in the
string, starting from this character are ignored. However, the comment
character can only appear at the first position of the data line (in which
case the entire line is ignored) or after the last character of the last data
string.

• If varname is a scalar, it is obvious that only one value needs to be given
and there is no data separator. In case of a vector, the number of data
can be lower than the size of the vector in which case the non-defined
values are set to their defaults. However if a vector has a specified
“physical” size, all expected data must be given. Examples are the
arrays index obc (physical size given by nconobc) or ntrestart (physical
size given by norestarts).

• If the model parameter represents a multi-dimensional array (of rank
m), the first m-1 data strings represent the vector index for the first m-1
dimensions, the subsequent the values for each array index of the last
dimension. As before, the number of values does not need to be equal
to the size of the last dimension, unless a “physical” size is expected.

• If the variable is a derived type scalar variable, the data strings repre-
sent each component in the order as given by the TYPE definition in
datatypes.f90. Derived type arrays are initialised element-wise, i.e. a
separate line for each array element. The first data string(s) are the
array indices of the first, . . . , last array dimension.

• The first array index for the variable modfiles is not given by a numeric
value but by its file descriptor format in string format, e.g. the string
modgrid corresponds to the key id io modgrd whose numeric value is set
by the program to 3.

• If a data string contains only blanks or equals the null string, the value
of the corresponding model parameter is undefined, in which case its
default value is retained. When the CIF is written by the program, all
variables (even defaults) are defined in the data strings.

• No error occurs if a model scalar or array parameter does not appear
on any input line in which case the default value is retained.

• The characters in the string varname are case insentitive. If the CIF
is written by the program, the names are always given in upper case
characters.

6

• When a CIF is written by the program, all setup parameters are in-
cluded in the file. The values are either the default settings or the
re-defined values from a call to the appropriate usrdef routine or the
ones reset by the program after a call to a reset routine. Only excep-
tion to this rule is the parameter cold start which is always written as
.FALSE. and can only be changed by editing the CIF manually.

CIF blocks

A CIF file is composed of six blocks which much be given in a specific order.
Each block corresponds to a usrdef routine (given in parentheses below)
where the parameters could be defined in absence of the CIF.

1: monitoring parameters (usrdef init params)

2: general model setup parameters (usrdef mod params)

3: parameters for the setup of time series output (usrdef out params)

4: parameters for the setup of time averaged output (usrdef avr params)

5: definitions for making harmonic analyses (usrdef anal freqs)

6: parameters for harmonic output (usrdef anal params)

The following rules apply for CIF blocks

• A CIF block is terminated by a line whose first character is the block
separator ‘#’ (the rest of the line is ignored).

• A block may be empty but the separator lines must always be there.
This means that the file must contain 6 lines (including the last one)
starting with a ‘#’. An empty block is represented by two consecutive
separator lines.

• Empty blocks are written by the program in the following cases

– block 3: no time series output (iopt out tsers=0)

– block 4: no time averaged output (iopt out avrgd=0)

– blocks 5 and 6: no harmonic output (iopt out anal=0)

• On the other hand, a block may be non-empty even when the appropri-
ate switch is zero. In that case the input lines are read by the program,
but no assignment is made.

7

CIF special characters

The CIF utility uses the following special characters

‘,’ separates the data strings on an input line

‘=’ separates the string varname from the data strings. Must be on all input
lines except those starting with a ‘!’ or ‘#’ character

‘!’ indicates the start of a comment. All characters on the input line at and
beyond this character are ignored.

‘#’ block separator. Must always be the first character on a separator line.

These special characters cannot be used in the string varname or in a data
string representing a string variable. For this reason the ‘,’ character between
seconds and milliseconds in a date/time string is now replaced by a ‘:’.

order of definitions

Each scalar or array parameter must be defined within its specific block.
However, the order of definition within a block is, in principle, irrelevant.
However, if the number of data on an input line depends on a “physical
size” dimension parameter defined by another model parameter, this size
parameter must appear on a previous data line.

Test cases

The test case results are exactly the same as in the previous version (V2.0)2.
To illustrate the use of the CIF utility, the test case runs can be set up in
two modes, depending on different choices for the defruns file. In the first
case, the defruns file located in the test case directory is taken and the setup
is as before.

In the second case, instructions for installation are the same as before
except that the following copy has to be made in the working directory

cp cifruns defruns

The simulation of a test case now proceeds in two phases:

1. The test is run with the cold start option set to .TRUE. and the CIF
status in defruns set to ‘W’. The program creates a CIF file and a series
of forcing files in COHERENS standard format.

2A small change is seen in output parameters of test cases rhone and bohai due to a
small bug in the program. This will be repaired in the next version.

8

2. The test is run again with the CIF status set to ‘R’ and input forcing
using the previously written standard files.

Model code

The following changes are made with respect to version V2.0:

1. Model Initialisation.F90

• The switch parallel set is defined in coherens start.

• Routine read cif mod params is called from initialise model if the
CIF status is set to ‘R’.

• Routine simulation start which reads the defruns file, is completely
re-written. Error coding is provided.

2. Model Parameters.f90
The following routines are added

assign cif vars Converts the data string(s) in the CIF input line
to the appropriate numerical, logical or string for-
mat.

read cif mod params General routines for reading a CIF file. The actual
data conversion is made by calling read cif line and
assign cif vars.

write cif mod params Writes the CIF for physical model setup.

Since copy operations between processes have been removed from the
program, the routine copy mod params has been deleted.

3. cif routines.f90
This is a new file with utility routines needed for the CIF implementa-
tion.

4. Since reading is now always performed in shared mode, all copy oper-
ations invoked when the now deleted parameter shared read was set to
.FALSE. have been removed. This affects the routines in the following
files

Grid Arrays.F90 define global grid, open boundary arrays

Open Boundary Data 2D.f90 define 2dobc data, define 2dobc spec

Open Boundary Data Prof.f90 define profobc data, define profobc spec

9

Nested Grids.F90 define nstgrd locs, define nstgrd spec

Parallel Initialisation.f90 domain decomposition

Relaxation.f90 define rlxobc spec

Surface Boundary Data 1D.f90 define 1dsur data, define 1dsur spec

Surface Data 1D.f90 define surface data

Surface Grids.f90 define surface input grid, define surface output grid

For the same reason the following routines are deleted from the code:

inout paral.f90 read copy vars

paral comms.f90 copy filepars, copy gridpars 2d, copy hgrid 2d, copy outgpars 1d,
copy statlocs 1d, copy varatts 1d

5. The default value for the status attribute of all forcing files is ‘0’ (un-
defined). This means that a usrdef routine (except usrdef init params)
is called only if the status of the corresponding forcing file is reset to
‘R’.

Compatibility with previous versions

An application, which has been set up with version V2.0, can be made com-
patible with V2.1.0, taking account of the following changes:

1. The status attribute is set to ‘0’ by default.

2. For application without CIF, each line in defruns should end by two
colons (’,,’).

3. Lines in defruns are commented by putting a ‘!’ instead of ‘#’ as the
first character on the input line.

4. The routines usrdef parallel no longer exists.

5. The switch parallel set is set automatically.

6. The switch shared read no longer exists.

7. An (eventual) non default value for idmaster is defined in usrdef mod params.

10

Recommendations for developers

When a developer wants to couple the model with a new compartment (e.g.
biology, sediments, . . .), a separate CIF can be created to read or write the
setup parameters for the specific compartment. Taking the case of a new
sediment module (activated when the switch iopt sed>0) as an example, this
can be implemented as follows:

1. Increase the value of the system parameter MaxCIFTypes in syspars.f90
by 1.

2. Create a new CIF key id, e.g. icif sed in iopars.f90.

3. The new CIF has two attributes, status and filename, which, contrary
to the model CIF, are not defined in defruns, but by the usual program
procedures

• Set the values by default in default mode params:

ciffiles(icif sed)%status = ’0’

ciffiles(icif sed)%filename = ’’

• The user can be activate the file by resetting the status and (even-
tually) the filename atribute in usrdef mod params:

ciffiles(icif sed)%status = ?

ciffiles(icif sed)%filename = ?

• Since the two attributes are considered as general model parame-
ters, their values should be included in the model CIF. This means
that the following code has to be added in assign cif vars

CASE (’CIFFILES’)

CALL check cif lbound novars(iddesc,numvars,3)

CALL conv from chars(cvals(1),icif,iddesc,1)

CALL conv from chars(cvals(2),ciffiles(icif)%status,iddesc,2)

CALL conv from chars(cvals(3),ciffiles(icif)%filename,iddesc,3)

and in write cif mod params

icif *: DO icif=3,MaxCIFTypes

CALL conv to chars(cvals(1),icif)

cvals(2) = ciffiles(icif)%status

cvals(3) = ciffiles(icif)%filename

CALL write cif line(iddesc,cvals(1:3),’CIFFILES’)

ENDDO icif *

11

4. Create a new subroutine assign cif vars sed for converting the CIF data
strings to the values of the sediment parameters. The routine can be
constructed using the formats given in assign cif vars.

5. Insert the following routine call at the beginning of routine assign cif vars:

IF (iddesc.EQ.icif sed) CALL assign cif vars sed

6. Read the new CIF at the appropriate place in routine initialise model:

IF (ciffiles(icif sed)%status.EQ.’R’) THEN

CALL read cif mod params(icif sed,iopt sed.GT.0.0)

ENDIF

7. Write the new CIF if requested by adding the following code in cohe-
rens main:

IF (master.AND.iopt sed.GT.0.AND.ciffiles(icif sed)%status.EQ.’W’) THEN

CALL write cif mod params(icif sed)

CALL close filepars(ciffiles(icif sed))

ENDIF

Parts of the CIF produced for test case plume.

COLD START = F

LEVPROCS INI = 3

LEVPROCS RUN = 3

INILOG FILE = plume1A.inilogA

RUNLOG FILE = plume1A.runlogA

RUNLOG COUNT = 8640

MAX ERRORS = 50

LEVPROCS ERR = 2

ERRLOG FILE = plume1A.errlogA

WARNING = T

WARLOG FILE = plume1A.warlogA

LEVTIMER = 3

TIMING FILE = plume1A.timingA

TIMER FORMAT = 1

#

IOPT ADV SCAL = 3

IOPT ADV TURB = 0

12

IOPT ADV TVD = 1

IOPT ADV 2D = 3

IOPT ADV 3D = 3

IOPT ARRINT HREG = 0

IOPT ARRINT VREG = 0

IOPT ASTRO ANAL = 0

IOPT ASTRO PARS = 0

IOPT ASTRO TIDE = 0

...

NC = 121

NR = 41

NZ = 20

NOSBU = 80

NOSBV = 120

NRVBU = 0

NRVBV = 1

NONESTSETS = 0

NORLXZONES = 0

NPROCS = 1

NPROCSX = 1

NPROCSY = 1

IDMASTER = 0

CSTARTDATETIME = 2003/01/03;00:00:00:000

CENDDATETIME = 2003/01/06;00:00:00:000

DELT2D = 30.

IC3D = 10

ICNODAL = 0

TIME ZONE = 0.

ATMPRES REF = 101325.

BDRAGCOEF CST = 0.

BDRAGLIN = 0.

...

NCONOBC = 1

INDEX OBC = 46

NCONASTRO = 0

ALPHA BLACK = 0.2

ALPHA MA = 10.

ALPHA PP = 5.

BETA MA = 3.33

BETA XING = 2.

...

13

NORESTARTS = 1

NTRESTART = 8640

INTITLE = plume1A

OUTTITLE = plumeA

MAXWAITSECS = 3600

NOWAITSECS = 0

NRECUNIT = 4

NOSETSTSR = 4

NOSTATSTSR = 0

NOVARSTSR = 9

NOSETSAVR = 0

NOSTATSAVR = 0

NOVARSAVR = 0

NOSETSANAL = 1

NOFREQSANAL = 1

NOSTATSANAL = 0

NOVARSANAL = 7

MODFILES = inicon,1,1,U,R,plumeA.phsicsU,0,0,0,0,F,F,

MODFILES = modgrd,1,1,A,R,plumeA.modgrdA,0,0,0,0,F,F,

MODFILES = 2uvobc,1,1,U,R,plume1A.2uvobc1U,0,0,0,0,F,F,

MODFILES = 3uvobc,1,1,A,R,plume1A.3uvobc1A,0,0,0,0,F,F,

MODFILES = salobc,1,1,A,R,plume1A.salobc1A,0,0,0,0,F,F,

MODFILES = 2uvobc,2,1,U,R,plume1A.2uvobc2U,0,0,1,0,F,F,

MODFILES = 3uvobc,2,1,A,R,plume1A.3uvobc2A,0,0,1,0,F,F,

MODFILES = salobc,2,1,A,R,plume1A.salobc2A,0,0,1,0,F,F,

SURFACEGRIDS = 1,1,0,0,1000.,1000.,0.,0.

#

TSRVARS = 1,0,0,width,Plume width,km,

TSRVARS = 2,0,0,hfront,Plume length,km,

TSRVARS = 3,161,2,umvel,X-component of depth-mean current,m/s,

Depth-mean current

TSRVARS = 4,170,2,vmvel,Y-component of depth-mean current,m/s,

Depth-mean current

TSRVARS = 5,113,2,zeta,Surface elevation,m,

TSRVARS = 6,162,3,uvel,X-component of current,m/s,Current

TSRVARS = 7,171,3,vvel,Y-component of current,m/s,Current

TSRVARS = 8,175,3,wphys,Physical vertical velocity,m/s,Physical current

TSRVARS = 9,204,3,sal,Salinity,PSU,

IVARSTSR = 1,6,7,8,9

IVARSTSR = 2,6,7,8,9

IVARSTSR = 3,6,7,8,9

14

IVARSTSR = 4,1,2,3,4,5

TSR3D = 1,T,U,plumeA 1.tsout3U,T,,2

TSR3D = 2,T,U,plumeA 2.tsout3U,T,,2

TSR3D = 3,T,U,plumeA 3.tsout3U,T,,2

TSR0D = 4,T,A,plumeA 4.tsout0A,T,,2

TSR2D = 4,T,U,plumeA 4.tsout2U,T,,2

TSRGPARS = 1,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,1,120,1,1,40,1,20,20,1,0,

8640,360

TSRGPARS = 2,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,30,30,1,1,40,1,1,20,1,0,

8640,360

TSRGPARS = 3,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,1,120,1,5,5,1,1,20,1,0,

8640,360

TSRGPARS = 4,T,F,F,F,2003/01/03;00:00:00:000,2,0,0,30,30,1,1,1,1,1,1,1,0,

8640,12

#

#

INDEX_ANAL = 46

NOFREQSHARM = 1

IFREQSHARM = 1,1

#

ANALVARS = 1,161,2,umvel,X-component of depth-mean current,m/s,

Depth-mean current

ANALVARS = 2,170,2,vmvel,Y-component of depth-mean current,m/s,

Depth-mean current

ANALVARS = 3,113,2,zeta,Surface elevation,m,

ANALVARS = 4,162,3,uvel,X-component of current,m/s,Current

ANALVARS = 5,171,3,vvel,Y-component of current,m/s,Current

ANALVARS = 6,175,3,wphys,Physical vertical velocity,m/s,Physical current

ANALVARS = 7,204,3,sal,Salinity,PSU,

IVARSANAL = 1,1,2,3,4,5,6,7

IVARSELL = 1,1,10

IVECELL2D = 1,1,2

IVECELL3D = 1,1,2

RES2D = 1,T,A,plumeA 1.resid2A,T,,2

RES3D = 1,T,A,plumeA 1.resid3A,T,,2

AMP2D = 1,1,T,A,plumeA 1.1amplt2A,T,,2

PHA2D = 1,1,T,A,plumeA 1.1phase2A,T,,2

ELL2D = 1,1,T,A,plumeA 1.1ellip2A,T,,2

ELL3D = 1,1,T,A,plumeA 1.1ellip3A,T,,2

ANALGPARS = 1,T,F,F,F,2003/01/03;06:00:00:000,3,0,0,1,120,1,1,40,1,1,20,1,0,

8640,1440

15

#

16

Version V2.1.1

Coherens Version : V2.1.1
previous release : V2.1.0
Revision : 160
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.1.1
Date of release : 2011-01-07
File (code) : coherensV210 r149.tar.gz
File (manual) : in preparation

Implementations

A verification procedure has been created through an external shell script
for testing new developments or to compare different versions of the code.
The script is documented elsewhere and is not considered as a new model
development. However, since the script uses the results of all test cases, a
few modifications of the model code and in the setup of the test cases were
necessary.

1. A new CPP compiler switch VERIF together with a new model switch
iopt verif have been created. If the compiler option is inserted in op-
tions.cpp, the verification switch iopt verif is set to 1. Otherwise, its
value is 0. Its value cannot be re-defined by the user.

2. Once the verification switch is activated, the following parameters for
time series output are reset (if necessary)

• Only one output set is allowed, i.e. nosetstsr=1.

• All output files are in netCDF format.

• Names of output variables must be different from the names of
the test parameters defined in Usrdef Output.f90.

17

• User output files must keep their default attributes.

• The output grid must extend over the whole domain.

3. A few other changes and corrections have been made further discussed
below.

Test cases

The setup of the test case parameters, defined in Usrdef Output.f90, is changed
as follows

cones The parameters xmin, xplus, ymin, yplus have the same meaning as
before, but are calculated by interpolation giving a higher precision.
Output at 12.5 minutes intervals.

csnsp Output at daily intervals.

river Output at 3 hours intervals.

plume Output at 3 hours intervals.

rhone Two new parameters etot and bdissip are added. Output at 6 hours
intervals.

Model code

The following changes have been with repsect to version V2.1.0.

1. Implementations for the verification procedure.

Model Initialisation.F90 The switch iopt verif is defined in coherens start
depending on the whether VERIF is set in op-
tions.cpp.

reset model.F90 Attributes of the user output files and output
grid are reset in routines reset out files and
reset out gpars if iopt verif=1.

2. Routine default out gpars in default model.f90: all output data grids
are set, by default, to the full (physical) model grid

xlims = (/1,nc-1,1/); ylims = (/1,nr-1,1/); zlims = (/1,nz,1/)

3. The “namelist” utility has become redundant by implementation of the
CIF, and has been removed from the code.

18

• The parameter MaxNMLTypes is removed in syspars.f90.

• The variable nmlfiles and the key ids nml * are removed from
iopars.

• Routines read mod params and write mod params are deleted in
Model parameters.f90.

• Routine reset nml params is removed in reset model.F90.

• Settings of default attributes for nmlfiles are deleted in default init params.

• The read and write calls for namelist files are removed in initialise model.

• Namelist definitions are removed in modules gridpars, iopars, paralpars,
physpars, switches, timepars, turbpars.

4. The definition of the parameter gacc ref in the previous versions caused
a conflict with the CIF utility. A new parameter gacc mean has been
defined which has the same meaning as gacc ref as in the previous
versions

• If gacc ref is defined, gacc mean=gacc ref.

• If gacc ref is undefined and the grid is Cartesian, gacc mean is
defined by the geodesic formula at the latitude given by dlat ref.

• If gacc ref is undefined and the grid is spherical, gacc mean is
defined by the geodesic formula applied at each C-node point and
averaged over the physical domain.

In this way, the parameter gacc ref can be written to the CIF while
retaining its initial setup value.

5. A small discrepancy was discovered when test cases rhone and bohai
are run without and with CIF. This has been removed by making a
small correction in the definitions of the model grid (i.e. replacing
fractions by numerical values).

6. A correction has to be made in the setup of all test cases so that the
test cases can be run without and with CIF. The code line

cold start = .TRUE.

is changed to

IF (ciffiles(icif model)%status.EQ.’W’) cold start = .TRUE.

19

in the usrdef init params routine for all test cases.

7. A bug was found in the nesting procedure for baroclinic currents. The
correct the error in a robust way the shapes of vertical profiles at open
boundaries has been modified so that the first dimension refers to the
horizontal position and the second to the vertical dimension. This
means in particular that

• obcvel3d(nz,0:noprofs),profvel(nz,maxprofs,2:nofiles,2) becomes
obcvel3d(0:noprofs,nz), profvel(maxprofs,nz,2:nofiles,2) in current cor.

• obcsal3d(nz,0:noprofs),profsal(nz,maxprofs,2:nofiles,2) becomes
obcsal3d(0:noprofs,nz), profsal(maxprofs,nz,2:nofiles,2) in salinity equation.

• obctemp3d(nz,0:noprofs),proftmp(nz,maxprofs,2:nofiles,2) becomes
obctemp3d(0:noprofs,nz), proftmp(maxprofs,nz,2:nofiles,2) in
temperature equation.

• obcdata(nzdat,0:noprofs) becomes obcdata(0:noprofs,nzdat).

• psiprofdat(nzdat,numprofs,numvars) becomes psiprofdat(numprofs,nzdat,numvars)
in usrdef profobc data.

• A similar switch of dimensions has been made in array arguments
of routines defined in Open Boundary Data Prof.f90.

8. The positions of the arguments representing the shape of vertical profile
arrays at open boundary arrays have been switched in the calls of the
following routines

• Open Boundary Conditions.f90: open boundary conditions 3d,
open boundary conds prof

• Open Boundary Data Prof.f90: define profobc data, read profobc data,
write profobc data

• Usrdef Model.f90: usrdef profobc data

For example

SUBROUTINE usrdef profobc data(iddesc,ifil,ciodatetime,psiprofdat,nzdat,&

& numprofs,numvars)

becomes

SUBROUTINE usrdef profobc data(iddesc,ifil,ciodatetime,psiprofdat,&

& numprofs,nzdat,numvars)

20

Compatibility with previous versions

To make an application, set up under version V2.1.0, compatible with V2.1.1
the following needs to be taken into account

• The namelist utility has been removed (and replaced by the CIF util-
ity).

• The shape of the array psiprofdat and the positions of the arguments
nzdat, numprofs have been modified in usrdef profobc data (see above).

21

22

Version V2.1.2

Coherens Version : V2.1.2
previous release : V2.1.1
Revision : 237
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.1.2
Date of release : 2011-05-20
File (code) : coherensV212 r237.tar.gz
File (manual) : in preparation

Implementations

user output

Data values for user output can be defined automatically by the program if
the user defines non-zero values for the variable key ids either in the CIF or
in the corresponding usrdef * params routines. New variable attributes are
available which can be set by the user and allow to apply an operator on the
output variable(s).

• If the key id of an output variable is set with a non-zero value, all meta-
data and output values are automatically generated by the program.
Otherwise, both metadata and output values need to be defined by the
user.

• If all key ids are positive, the following routines are no longer called

usrdef tsr0d vals, usrdef tsr2d vals, usrdef tsr3d vals,

usrdef avr0d vals, usrdef avr2d vals, usrdef avr3d vals,

usrdef anal0d vals, usrdef anal2d vals, usrdef anal3d vals

In the mixed case, i.e. if not all variables (with attributes stored in
tsrvars, avrvars or alnalvars) are defined with a non-zero key id, the

23

values of the ones with zero id need to be defined in the appropriate
usrdef * vals routines while the other ones are defined by the program
itself.

• A series of additional variable attributes have been implemented to
allow for different types of output

– The operator attribute oopt. If the rank of the result is diffe-
rent from the one implemented by the variable’s rank, the rank
attribute must be set to the rank of the result. For example, the
domain average of a 3-D variable has a rank of 0. The attribute
has one of the following values

oopt null No operator is applied (default).

oopt mean Result depends on the rank of the model variable and
the rank of the output data.

◦ If the rank of the result is 0, the output value is
the domain average in case of a 3-D or the surface
average in case of a 2-D variable. Land areas are
excluded in the averaging.

◦ If the rank of the output value is 2, the result is
the depth averaged value.

oopt max Result depends on the rank of the model variable and
the rank of the output data.

◦ If the rank of the result is 0, the output value is the
domain maximum in case of a 3-D or the surface
maximum in case of a 2-D variable. Land areas
are excluded.

◦ If the rank of the output value is 2, the result is
the maximum over the water depth.

oopt min Result depends on the rank of the model variable and
the rank of the output data.

◦ If the rank of the result is 0, the output value is the
domain minimum in case of a 3-D or the surface
minimum in case of a 2-D variable. Land areas are
excluded.

◦ If the rank of the output value is 2, the result is
the minimum over the water depth.

24

oopt klev Produces the value of a 3-D variable at the vertical
level given by the attribute klev. Rank of the result is
2.

oopt dep Produces the value of a 3-D variable at a specified
depth given by the attribute dep. Rank of the result
is 2.

– The attribute klev defines the output vertical level in case oopt
equals oopt klev.

– The attribute dep defines the output water depth (measured pos-
itively from the surface) in case oopt equals oopt dep. Result is 0,
if dep is larger than the total water depth at the output location.

– The node attribute is only used for 3-D variables defined at W-
nodes on the model grid. If node is set to ‘C’ (default), the vertical
profile of the variable is first interpolated at the C-node before the
operator is applied. It is remarked that quantities defined at U- or
V-nodes are always interpolated at C-nodes first before applying
the operator.

open boundary conditions

multi-variable arrays

In view of the implementation of biological and sediment models foreseen in
future version of COHERENS, the setup of open boundary conditions and the
input of open boundary data for 3-D scalars has been adapted so that open
boundary conditions can be defined and open boundary data can be obtained
for multi-variable arrays (such as biological state variables or different sedi-
ment fractions). Since the current version only contains a physical component
and the open boundary conditions and data are defined separately for each
variable (baroclonic current, temperature, salinity), the procedures have not
fully tested. Instructions for users of the current version and compatibility
with previous versions are discussed below.

baroclinic mode

Two additional open boundary conditions for the baroclinic current have
been implemented

1. Second order gradient condition. In case of ragged open boundaries the
(first order) zero gradient condition may yield spurious discontinuities

25

of the vertical current at the first interior node. The effect is reduced
when using the second order condition

1

h1

∂

∂ξ1

[1

h1h2

∂

∂ξ1
(h2h3δu)

]
= 0 ,

1

h2

∂

∂ξ2

[1

h1h2

∂

∂ξ2
(h1h3δv)

]
= 0 (1)

at respectively U- and V-node open boundaries. The discretised version
of 1 at U-nodes becomes

δui =
hu2;i+1:i−1

hu2;i

hu3;i+1:i−1

hu3;i

(
1 +

hc1;i:i−1
hc1;i+1:i−2

hc2;i:i−1
hc2;i+1:i−2

)
δui+1:i−1

−
hu2;i+2:i−2

hu2;i

hu3;i+2:i−2

hu3;i

hc1;i:i−1
hc1;i+1:i−2

hc2;i:i−1
hc2;i+1:i−2

δui+2:i−2 (2)

at U-nodes. A similar expression applies at V-nodes.

2. A local solution for the baroclinic current is obtained by solving the
equation, obtained from the 3-D and 2-D momentum equations without
advection and horizontal diffusion.

∂δu

∂t
− 2Ω sinφδv = F b

1 −
F b
1

H
+

1

h3

∂

∂s

(νT
h3

∂δu

∂s

)
+
τb1 − τs1

H
(3)

at U-nodes and

∂δv

∂t
+ 2Ω sinφδu = F b

2 −
F b
2

H
+

1

h3

∂

∂s

(νT
h3

∂δv

∂s

)
+
τb2 − τs2

H
(4)

at V-node open boundaries. At the surface and the bottom the diffusive
fluxes are set to zero.

2-D open boundary conditions

A relaxation condition can (optionally) be applied for all exterior 2-D data
(transports and elevation) in case the model is set up with the default ini-
tial conditions (zero transports and elevations). In that case the exterior
data function ψe(ξ1, ξ2, t) is multiplied by the factor αr(t) = min(t/Tr, 1),
where Tr is the relaxation period. The method avoids the development of
discontinuities during the initial propagation of (e.g.) a tidal wave into the
domain.

26

Instructions for users

user output

Automatic generation of user output data is selected by defining an output
variable with a zero key id attribute ivarid and, eventually, defining the ad-
ditional variable attributes oopt, klev, dep. The only other attribute which
must be defined always, is the output dimension of the variable nrank. In case
of a user-defined variable with a zero ivarid, all attributes must be supplied
by the user. Its value must then be defined in the approriate usrdef * vals
routine with the appropriate index in the output data vector. For example,
if X is a user-defined 2-D variable and defined as the second 2-D variable in
tsrvars, its output value is defined in usrdef tsr2d vals using

out2ddat(2) = X(i,j)

open boundary conditions

The routine usrdef profobc spec is called with different arguments

SUBROUTINE usrdef profobc spec(iddesc,itypobu,itypobv,iprofobu,&

& iprofobv,iprofrlx,noprofsd,indexprof,&

& indexvar,novars,nofiles)

INTEGER, INTENT(IN) :: iddesc, nofiles, novars

INTEGER, INTENT(INOUT), DIMENSION(2:nofiles) :: noprofsd

INTEGER, INTENT(OUT), DIMENSION(nobu) :: itypobu

INTEGER, INTENT(OUT), DIMENSION(nobv) :: itypobv

INTEGER, INTENT(INOUT), DIMENSION(nobu,novars) :: iprofobu

INTEGER, INTENT(INOUT), DIMENSION(nobv,novars) :: iprofobv

INTEGER, INTENT(INOUT), DIMENSION(novars*(nobu+nobv),2:nofiles) :: indexprof

INTEGER, INTENT(INOUT), DIMENSION(novars*(nobu+nobv),2:nofiles) :: indexvar

INTEGER, INTENT(INOUT), DIMENSION(norlxzones) :: iprofrlx

The arguments have the same meaning as before except that

• Since novars (number of variables in case of multi-variable model arrays)
equals 1 in the current implementation, the new second dimension for
iprofobu and iprofobv can be omitted.

• The previous argument novarsd has been removed.

• Argument iobctype is replaced by indexvar and should not be defined in
the current implementation.

27

• The type of open boundary condition is selected at each open boundary
point by the value of itypobu or itypobv. When the routine is called
for baroclinic currents (iddesc=io 3uvobc) their meaning is modified as
follows

0: (First order) zero gradient condition or specified profile

1: Second order zero gradient condition

2: Local solution

3: Radiation condition using the baroclinic internal wave speed

4: Orlanski condition

A more detailed explanation will be presented in future release notes.
Routine is usrdef profobc data is now declared as follows

SUBROUTINE usrdef profobc data(iddesc,ifil,ciodatetime,psiprofdat,numprofs)

CHARACTER (LEN=lentime), INTENT(INOUT) :: ciodatetime

INTEGER, INTENT(IN) :: iddesc, ifil, numprofs

REAL, INTENT(INOUT), DIMENSION(numprofs,nz) :: psiprofdat

The following changes have been made

• The arguments nzdat and numvars have been removed.

• The third dimension of psiprofdat has been removed.

• The code in the routine must contain the statement

USE gridpars

The relaxation condition at open boundaries for the 2-D mode is de-
fined by the new parameter ntobcrlx which equals Tr/∆2D. Default is zero
in which case no relaxation is applied. The parameter is defined either in
usrdef mod params or in the CIF.

Test cases

No changes are made to the definition of the test cases. The output test
parameters are mostly the same as in the previous version. Most output
data are automatically generated so that most usrdef * vals routines become
empty.

28

Model code

user output

The generation of 0-D time series output is illustrated by the following code
lines in routine time series

IF (tsr0d(iset)%defined) THEN

outvars(1:noutvars0d) = tsrvars(ivarstsr0d(iset,1:noutvars0d))

CALL define out0d vals(out1dsub,noutvars0d,&

& outvars=outvars(1:noutvars0d))

IF (ANY(outvars(1:noutvars0d)%ivarid.EQ.0)) THEN

CALL usrdef tsr0d vals(outdat(1:novars0d),novars0d)

WHERE (outvars(1:noutvars0d)%ivarid.EQ.0)

out1dsub = outdat(ivarstsr0d(iset,1:noutvars0d))

END WHERE

ENDIF

ENDIF

The routine define out0d vals provides the output data for the variables with a
specified variable key id. The routine usrdef tsr0d vals has the same meaning
as in the previous versions. A similar procedure is taken for 2-D and 3-D
output and for time averaging and harmonic analysis.

The define routines are declared as follows

SUBROUTINE define out0d vals(outdat,novars,outvars,ivarid,oopt)

INTEGER, INTENT(IN) :: novars

REAL, INTENT(OUT), DIMENSION(novars) :: outdat

INTEGER, INTENT(IN), OPTIONAL, DIMENSION(novars) :: ivarid, oopt

TYPE (VariableAtts), INTENT(IN), OPTIONAL, DIMENSION(novars) :: outvars

which defines 2-D output data. The arguments have the following meaning

outdat Returned output values

novars Number of (0-D) output data

outvars Attributes of the output variables. Must be present only when ivarid
is not present.

ivarid Key ids of the output variables. Must be present only if outvars is
not present.

oopt Operator attributes selecting the type of output if outvars is not
present. Default is oopt null.

29

SUBROUTINE define out2d vals(outdat,i,j,novars,outvars,ivarid,oopt,&

& klev,dep,node)

INTEGER, INTENT(IN) :: i, j, novars

REAL, INTENT(OUT), DIMENSION(novars) :: outdat

CHARACTER (LEN=lennode), OPTIONAL, DIMENSION(novars) :: node

INTEGER, INTENT(IN), OPTIONAL, DIMENSION(novars) :: ivarid, klev, oopt

REAL, INTENT(IN), OPTIONAL, DIMENSION(novars) :: dep

TYPE (VariableAtts), INTENT(IN), OPTIONAL, DIMENSION(novars) :: outvars

which defines 2-D output data. The arguments have the following meaning

outdat Returned output values

i (Local) grid index in the X-direction

j (Local) grid index in the Y-direction

novars Number of (2-D) output data

outvars Attributes of the output variables. Must be present only when ivarid
is not present.

ivarid Key ids of the output variables. Must be present only if outvars is
not present.

oopt Operator attributes selecting the type of output if outvars is not
present. Default is oopt null.

klev klev attributes if outvars is not present and the corresponding oopt
value equals oopt klev

dep dep attributes if outvars is not present and the corresponding oopt
value equals oopt dep

node node attributes if outvars is not present. Should be defined only for
3-D variables located at W-nodes on the model grid in which case
output is taken at the node given by cnode. Allowed values are ‘C’
(default) and ‘W’.

SUBROUTINE define out3d vals(outdat,i,j,k,novars,outvars,ivarid,node)

INTEGER, INTENT(IN) :: i, j, k, novars

REAL, INTENT(OUT), DIMENSION(novars) :: outdat

CHARACTER (LEN=lennode), OPTIONAL, DIMENSION(novars) :: node

INTEGER, INTENT(IN), OPTIONAL, DIMENSION(novars) :: ivarid

TYPE (VariableAtts), INTENT(IN), OPTIONAL, DIMENSION(novars) :: outvars

which defines 3-D output data. The arguments have the following meaning

30

outdat Returned output values

i (Local) grid index in the X-direction

j (Local) grid index in the Y-direction

k Vertical grid index

novars Number of (3-D) output data

outvars Attributes of the output variables. Must be present only when ivarid
is not present.

ivarid Key ids of the output variables. Must be present only if outvars is
not present.

node node attributes if outvars is not present. Should be defined only for
3-D variables located at W-nodes on the model grid in which case
output is taken at the node given by cnode. Allowed values are ‘C’
(default) and ‘W’.

other

• The interfaces of the routines in Open Boundary Data Prof.f90 have
been modified. Details are found in the model code.

• The new (and already existing) algorithms for the baroclinic current
are defined in open boundary conds 3d (and removed from current corr).

• The relaxation condition for 2-D open boundary data are applied in
update 2dobc data.

• The new attributes for output variables are added to the CIF.

• The following routines have been added

– intpol1d model to dep in grid.interp.F90

– tvd limiter 0d in utility routines.F90

bug corrections

• In the previous versions an error may occur when non-uniform av-
eraging is applied for model grid arrays if either iopt arrint hreg or
iopt arrint vreg are set to 1. The correction has been made in rou-
tine grid spacings by defining all horizontal grid spacing arrays over a
virtual extended computational domain.

• A correction is made in the calculation of the Richardson number in
turbulence routines.F90.

31

Compatibility with previous versions

Version V2.1.2 is compatible with tV2.1.1 except that

• Additional parameters appear in the CIF (new attributes of user output
variables).

• The arrays itypobu and itypobv have a slightly different meaning if ap-
plied for defining the open boundary conditions for the baroclinic mode.

32

Version V2.2

Coherens Version : V2.2
previous release : V2.1.2
Revision : 367
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.2
Date of release : 2011-10-14
File (code) : coherensV2.2.tar.gz
File (manual) : manualV2.1.2.pdf

Implementations

3-D masks

This version has primarily been created to anticipate the implementation
of structures at velocity nodes (e.g. thins dams, groines, current deflection
walls, . . .), foreseen in a future version. For this reason, the pointer arrays
nodeatu and nodeatv have been re-defined with an extra vertical dimension.
In this way, a dynamic 3-D mask can be implemented in the future to simulate
(e.g.) the flow over a thin dam, which extends above/below the water surface
at low/high tide.

momentum fluxes at corner points

In analogy with the pointer arrays at velocity nodes, a new 3-D array nodea-
tuv has been created at corner nodes (replacing the pointer arrays nodeate,
nodeatx, nodeaty in the previous versions). These nodes are used in the pro-
gram for the evaluation of the cross-stream advective and diffusive fluxes for
horizontal momentum and are located at the intersection of two U- and two
V-interfaces. Main difference, with the previous version(s), is that a corner
node is declared as wet if at least one of the adjacent U-nodes and one of

33

the adjacent V-nodes is wet (see below). The new definition is of importance
near ragged coastal and open sea boundaries.

The concept of X- and Y-nodes is no longer retained, except at open
boundaries (see below).

open boundaries at corner nodes

The previous definitions are changed as follows:

• A corner node is defined as a X-node open boundary if both neighbour-
ing U-nodes are open boundaries or one of the neighbouring U-nodes
is an open boundary and the other a land boundary.

• A corner node is defined as a Y-node open boundary if both neighbour-
ing V-nodes are open boundaries or one of the neighbouring V-nodes
is an open boundary and the other a land boundary.

open boundary conditions at corner nodes

In several applications of COHERENS, especially those using ragged open
boundaries, instabilities were observed near the open boundaries. These took
the form of growing vortices, eventually leading to a crash of the program.
Using the notations in the User documentation (see Chapter Numerical Me-
thods) the following changes and new implementations have been made.

• Two schemes are now available to evaluate the cross-stream advective
fluxes in the u-equation at Y-open boundary nodes (analogous expres-
sions apply for the v-equation and 2-D momentum equations):

1. The first one uses a zero gradient condition

F uv
12;ij = F uv

12;i,j+1:j−1 (5)

which is the same as before.

2. The flux is determined using the upwind scheme (where possible).
This means that

F uv
12;ij =

1

2
vuvij

(
(1 + sij)ui,j−1:j + (1− sij)ui,j:j−1

)
(6)

where sij = 1 in case of an inflow condition and either

– (i,j-1:j) is a U-open boundary

– (i-1,j) is a closed (land or coastal) V-node

34

– (i,j) is a closed V-node.

In all other cases, sij = −1.

• The cross-stream diffusive fluxes in the u-equation are avaluated as
follows (analogous expressions apply for the v-equation and 2-D mode
equations)

– If either (i,j-1:j) is a U-open boundary, or (i-1,j) is a closed (land or
coastal) V-node, or (i,j) is a closed V-node, the flux is calculated
in the same way as for an internal node.

– Otherwise, if (i,j-1:j) is an interior U-node, then the zero gradient
condition Duv

12;ij = Duv
12;i,j+1:j−1 is applied.

– Otherwise, the flux is set to zero, i.e. Duv
12;ij = 0

relaxation condition for advection

An optional relaxation scheme has been implemented which reduces the im-
pact of advection within a user-defined distance from the open boundaries.
In that case, the advective terms are multiplied by the relaxation factor

αor = min(d/dmax, 1) (7)

where d is the distance to the nearest open boundary. Experiments showed
that, with an appropriate choice of the maximum relaxation distance dmax,
the unstable vortex motions no longer propagate into the domain.

The scheme replaces the previous scheme, selected by iopt obc int which
has been removed from the code.

interpolation routines

The routines in array interp.f90 for interpolating a model array from one grid
node to another one have been modified to take account of 3-D masks and
coastal boundaries at velocity nodes. This is further discussed below.

Model code

pointer arrays

The following changes have been made

• The pointer arrays nodeatu and nodeatv have an extra vertical dimen-
sion .

35

• The arrays nodeatx, nodeaty, nodeate have been removed.

• New 3-D pointer arrays nodeatuw, nodeatvw and nodeatuv are intro-
duced.

The pointer array nodeatc at C-nodes has the same meaning as before.
The arrays are declared with the following shapes

REAL, DIMENSION(1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz) :: &

& nodeatu, nodeatv, nodeatuv

REAL, DIMENSION(1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz+1) :: &

& nodeatuw, nodeatvw

and have the following meaning

nodeatu Pointer at U-node cell faces

0: dry (land) cell face

1: coastal or structure velocity boundary

2: interior wet U-node

3: open sea boundary

4: river open boundary

nodeatv Pointer at V-node cell faces

0: dry (land) cell face

1: coastal or structure velocity boundary

2: interior wet V-node

3: open sea boundary

4: river open boundary

nodeatuw Pointer at UW-node cell faces

0: dry (land) cell face or bottom cell (1) or surface cell (nz+1)

1: coastal or structure velocity boundary

2: interior wet UW-node

3: open sea boundary

4: river open boundary

nodeatvw Pointer at VW-node cell faces

0: dry (land) cell face or bottom cell (1) or surface cell (nz+1)

36

1: coastal or structure velocity boundary

2: interior wet VW-node

3: open sea boundary

4: river open boundary

nodeatuv Pointer at corner nodes

0: at least two surrrounding U-nodes or at least two surrrounding
V-nodes are dry

1: interior wet node, i.e. at most one surrounding U-node and
at most one surrounding V-node is dry and none of the four
surrounding velocity nodes are open boundaries

2: X-node open boundary, in which case at least one of the sur-
rounding U-nodes is an open boundary while the other one is
either a closed node or open boundary, but the node is not a
Y-node open boundary

3: Y-node open boundary, in which case at least one of the sur-
rounding V-nodes is an open boundary while the other one is
either a closed node or open boundary, but the node is not an
X-node open boundary

4: the node is both a X- and a Y-node open boundary

Important to note that structures can only be defined at interior sea nodes
which excludes coastal and open boundaries. This means that if nodeatu,
nodeatv, nodeatuv have different values along the vertical, these values must
be either 1 or 2 for the first two arrays and 0 or 1 for the third one. The
same applies for nodeatuw, nodeatvw, with exception of the surface (nz+1)
and bottom (1) level where the value is always 0.

open boundaries

1. The parameters nobx, noby and the logical open boundary arrays west-
obx, soutoby have the same meaning as before, taking account that a
X-open boundary is defined at a corner node where nodeatuv equals 2
or 4, and a Y-open boundary where nodeatuv equals 3 or 4.

2. The type of open boundary condition for cross-stream advective (2-D
and 3-D) fluxes at corner nodes is selected by the new switch iopt obc advflux

1: zero gradient condition (5.286) which is the default

37

2: quasi upwind scheme (5.287)

3. The switch iopt obc int and (consequently) the arrays itypintobu, ityp-
intobv have been removed.

4. The relaxation condition for advection near open boundaries is selected
by the new switch iopt obc relax:

0: relaxation scheme disabled (default)

1: relaxation scheme enabled. In that case the parameter distrlx obc
(representing the parameter dmax) must be defined by the user in
usrdef mod params or in the CIF.

interpolation routines

The grid interpolation routines, defined in array interp.f90, have been rewrit-
ten. The name and meaning of each routine is the same before. There are
however some important changes:

• The argument intsrce selects which points at the source node are taken
into account. The meaning depends on the type of node and is doc-
umented internally in the source code and externally in the Reference
Manual.

• The argument intdest selects at which points on the destination node
interpolation is performed. The meaning depends on the type of node
and is documented internally in the source code and externally in the
Reference Manual.

• Vertical interpolation is (obviously) not allowed on land. This means,
in particular, that W-, UW- and VW-nodes are excluded as source or
destination nodes on land.

• A clear distinction has now been made between velocity nodes at coastal
boundaries and at closed land cell faces.

• The arguments lbounds and ubounds are respectively the lower and up-
per boundaries of the interpolating array at the source node. Contrary
to the previous versions, the interpolating array is assumed to be 3-D
so that the two vectors must have a size of 3. Interpolation of a 2-D
(horizontal) array is performed by taking the same value for lbounds(3)
and ubounds(3).

38

structures

When structures will be implemented in the program, the bottom/surface
boundary conditions are not always applied at the bottom/surface level itself
but at a level k greater than 1 or lower nz. The following parameters are
defined

• The switch iopt structs disables/enables the use of structures in the
model domain. If enabled (1), the bottom/surface conditions (and for-
mulation of the bottom stress) are applied at vertical levels determined
by masksuratu, masksuratv or maskbotatu, maskbotatv (defined below).
The switch is currently disabled (0).

• The bottom and surface levels are defined by the following arrays

masksuratu 3-D array at the U-nodes, which is set to .TRUE. at the
vertical level where the surface boundary condition is ap-
plied

masksuratv 3-D array at the V-nodes, which is set to .TRUE. at the
vertical level where the surface boundary condition is ap-
plied

maskbotatu 3-D array at the U-nodes, which is set to .TRUE. at the
vertical level where the bottom boundary condition is ap-
plied

maskbotatv 3-D array at the V-nodes, which is set to .TRUE. at the
vertical level where the bottom boundary condition is ap-
plied

source code

The source code has been changed at many places, due to the introduction
of 3-D masks at velocity nodes. This applies in particular for the advection
(Advection Terms.F90) and diffusion routines (Diffusion Terms.F90) and for
routines performing array interpolation on the model grid (array interp.f90).

• The vertical k-loops have been replaced at several places by WHERE
statements using 3-D masks.

• The interpolation routines have been modified to take account of ve-
locity nodes with a non-uniform dry/wet status along the vertical.

• Application of the bottom and surface boundary conditions at velocity
nodes in case iopt structs=1.

39

As a consequence of these changes, the CPU time increases by about 10–20%.
This has been confirmed by comparing the simulation times of the test cases
with those performed using version V2.1.2. The problem will be more fully
investigated at a later stage.

Test cases

The setup of the test cases has not been changed3. Since the code has been
modified at several places, the output parameters slightly differ from the ones
obtained with V2.1.2.

Compatibility with previous versions

Version V2.2 is compatible with V2.1.2 except that the switch iopt obc int
and the open boundary setup arrays itypintobu, itypintobv have been removed.

3Sole exception is that the switch iopt obc int has been removed and iopt obc advflux
is set to 2 in test case optos csm.

40

Version V2.3

Coherens Version : V2.3
previous release : V2.2
Revision : 438
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.3
Date of release : 2012-03-12
File (code) : coherensV2.3.tar.gz
File (manual) : manualV2.3.pdf

Implementations

inundation schemes

The existing drying/wetting scheme has been extended by implementing so-
called “mask functions”. They are defined as criteria for “masking” grid
cells according to their condition (dry or wet). When the criterion evaluates
as .TRUE. at a particular grid cell, the mask function will “mask in” the
cell. Hence, they will be considered for the solution of the hydrodynamic
equations. On the other hand, if grid cells become dry, the mask criterion
will “mask out” such grid cells and updates of quantitites defined at these
cells will be suspended. The process is repeated at the start of each predictor
time step.

Eleven mask functions are defined and can be used in combined form.
They can be divided in four groups. The first group compares the water
depths of a cell and its neighbours with a threshold value dth and is composed
of the following six criteria:

max(Hi,j, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (8)

min(Hi,j, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (9)

41

mean(Hi,j, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (10)

max(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (11)

min(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dthd (12)

mean(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dtd (13)

where “mean” denotes an averaged value (excluding land cells which are
permanently dry).

A second group of criteria verifies the “status” of the current grid cell
and/or its neighbours. The status is defined by the function N which eval-
uates to 0 at dry and 1 at sea cells. The following criteria, used to prevent
the formation of isolated dry or wet cells, have been implemented:

max(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 (14)

min(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 (15)

The third group is a variant of the previous one and checks, in addition,
whether the total water depth of the grid cell is lower than the threshold
value:

max(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 and Hi,j < dth (16)

min(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 and Hi,j < dth (17)

The last scheme is intended for channel flows and overflowing dykes. The
criterion uses the total and mean water depths at the grid cell and its neigh-
bours

min(hi−1 −Hi−1, hi+1 −Hi+1) > hi (18)

If one (or more) of the above criteria evaluates as .TRUE., the grid cell
is (temporarily) set to dry. In that case the surrounding velocity nodes are
blocked and the currents set to zero. The same criteria are verified at the
next 3-D time step. The cell will be come wet again as soon as the (combined)
criterion evaluates to .FALSE.

The above criteria can be in applied in combination. This means that,
if several criteria have been activated by the user, the cell becomes dry if at
least one of them turns .TRUE. The cell becomes wet again if all of them
evaluate to .FALSE.

In analogy with the existing algorithm in COHERENS a number of terms
in the momentum equations are multiplied by the “drying” factor α and a
minimum water depth is applied at each (2-D) time step. In version V2.3,
these minima are determined as follows:

Hc
ij ≥ Hmin , ζij ≥ Hmin − hij (19)

42

at C-nodes,

Hu
ij = min(Hc

i−1,j, H
c
ij) if min(Hc

i−1,j, H
c
ij) < Hcrit (20)

at U-nodes, and

Hv
ij = min(Hc

i,j−1, H
c
ij) if min(Hc

i,j−1, H
c
ij) < Hcrit (21)

at V-nodes.

other

1. By default, user output files are written as netCDF (‘N’) or unformatted
binary (‘U’) files depending on whether -DCDF compiler option has
been specified or not. These defaults can be reset by the user in the
usrdef tsr params, ... routines in the appropriate Usrdef files.

2. The status of open boundary forcing files is (re)set to ‘N’ (undefined) if
the appropriate switch is not set. For example, modfiles(io 2uvobc,:,:)%status
is set to ‘0’ is iopt obc 2D=0.

Model code

The following files have been created or modified

Inundation Schemes.f90
The following routines, only called if iopt fld is non-zero, are defined
here

mask function The routine is called by coherens main at the start of
the predictor time step and

• evaluates one or more mask criteria

• set a cell to dry (at the C-node) if the criteria
return .TRUE.

• block the surrounding U- and V-velocity nodes

• set the currents to zero at blocked velocity nodes

minimum depths Use (19)–(21) to set the total water depths and surface
elevations to their minimum values where necessary.
The routine is called from water depths.

drying factor Evaluates the drying factor α at each 2-D time step.
The routines is called from surface elevation.

43

Grid Arrays.F90
A new routine store depths old for storing the old water depths has been
created. The routine is called before mask function from coherens main
at the start of the predictor step.

depths.f90
When the total water depth is reset to its minimum value, artificial
water is added to the water column. This means that mass conservation
has been violated. The program stores this “depth deficit” at each time
step into the depth error array deptotatc err

WHERE (depmeanatc(1:ncloc,1:nrloc).GT.0.0.AND.&

& deptotatc(1:ncloc,1:nrloc).LT.dmin fld)

deptotatc err = deptotatc err - deptotatc(1:ncloc,1:nrloc) + &

& dmin fld

END WHERE

Note that the array is always positive and can only increase in time.

gridpars.f90
The parameters nowetatc, nowetatcloc, nowetu, nowetuloc, nowetv, nowetvloc,
nowetuv, nowetuvloc have been removed. The following parameters are
added

noseaatc Number of sea (dry or wet, but excluding permanent land
points) C-node points on the global domain

noseaatcloc Number of sea (dry or wet, but excluding permanent land
points) C-node points on the local domain

nowetatc Number of currently active (wet) C-node points on the
global domain

nowetatcloc Number of currently active (wet) C-node points on the
local domain

paralpars.f90
The arrays nowetcprocs, nowetuprocs, nowetvprocs, nowetuvprocs have
been removed.

physpars.f90
The following parameters have been added

dthd fld User-defined treshold depth dth. Default is 0.1 m

nofldmasks Number of implemented mask functions.

44

fld mask(nofldmasks) Enables (1) or disables (0) a specific mask func-
tion. Default is fld mask(1)=1, fld mask(2:)=0. This can
be changed by the user.

switches.f90

iopt CDF Enables/disables netCDF output (0/1). The switch is switched
on automatically if the program is compiled with the -DCDF
CPP option and cannot be set by the user.

iopt fld Selects the type of drying/wetting algorithm

0: Drying/wetting disabled

1: Without using the dynamic mask function

2: Dynamic mask function enabled

inout routines.f90
A few bugs (typing errors) have been corrected.

paral utilities.f90
The sum2 vars generic routine has an additional (optional) argument

LOGICAL, INTENT(IN), OPTIONAL, DIMENSION(:,:[,:]) :: mask

If present, grid points where mask is .FALSE. are excluded in calculat-
ing the sum. Otherwise, the mask is defined internally. The princi-
pal reason for implementing the new argument is that cells which are
temporarily set to dry, are excluded if the argument is not present.
They can be put in again by providing the mask as an argument, e.g.
mask=depmeanatc(1:ncloc,1:nrloc).GT.0.0.

reset model.F90
The status attribute of the open boundary forcing files is set to ‘0’ if
the corresponding switch is zero.

Instructions for users

The procedures for setting up an application with the drying/wetting algo-
rithms are as follows

usrdef mod params

1. Enable the inundation scheme by setting iopt fld to 1 or 2.

45

2. If iopt fld=2, select the mask criteria by setting the elements of
the vector fld mask to 0 or 1. In most cases, the default scheme is
sufficient. Note that the array is not used if iopt fld=1.

3. Define the depth parameters dmin fld, dcrit fld, dthd fld. Defaults
are (0.02,0.1,0.1). The threshold depth dthd fld is only used when
iopt fld=2.

All these parameters can alternatively be defined in the CIF.

usrdef grid
If it is the intention to apply COHERENS for the simulating the flooding
of (intially dry) land arrays or obstacles, the following procedure is
recommended

1. Define the topographic height (e.g. hmax) of the highest points on
land which can potentially be flooded by a rising sea level.

2. Increase the reference mean sea level by adding hmax to the initial
bathymetry (with respect to the standard mean sea level).

3. Note that grid points with a zero mean water depth are consid-
ered by the model as permanently dry land points and cannot be
flooded. Negative depth values are not allowed.

usrdef phsics
Reset the initial surface elevation to take account of the changed refer-
ence level

ζnewin = ζoldin − hmax (22)

where ζoldin is the sea level with respect to the standard level. If, by
this procedure, the total water depth becomes negative (more precisely
lower than dmin) the total depth will be reset to dmin. In case a dy-
namic mask is applied, these grid cells may be (temporarily) set to dry
(depending on the type of mask function) at the initial time.

usrdef 2dobc data
If residual (non-harmonic) elevation data are used as open boundary
forcing, the previous change in mean sea level must be taken into ac-
count.

Test cases

Two new inundation test case have been implemented

46

flood2d
Flooding and drying inside a channel. The following experiments are
defined

‘A’ Flooding/drying of land masses over a sloping bottom by an oscil-
lating (tidal) current. No dynamic mask is used.

‘B’ The same as experiment ‘A’, now using a dynamic mask.

‘C’ Flooding/drying over an obstacle located in the middle of the chan-
nel by an oscillating (tidal) current. No dynamic mask is used.

‘D’ The same as experiment ‘C’, now using a dynamic mask.

flood3d
Flooding and drying inside a rectangular basin. An oscillating current
enters the basin on the western side. All other sides of the basin are
closed. All experiments use a mask function.

‘A’ Flooding/drying over a spherical hill in the middle of the basin.

‘A’ Flooding/drying over a double-peaked hill in the middle of the
basin.

‘C’ Flooding/drying over a spherical atoll. The inner side of the atoll
is taken as dry at the initial time.

‘D’ The same as experiment ‘C’, now in depth-averaged mode.

Test case parameters, in particular for testing mass conservation, are defined
for each experiment. Further details about the setup and output parameters
of these test cases are described in the User Manual.

The three optos test cases are modified as follows:

1. Harmonically analysed values of surface elevation and currents (elliptic
parameters) at selected stations are defined as test case parameters.

2. The drying/wetting algorithm with dynamic mask has been activated.

3. Each optos test is run for a one month period. Disadvantage is a
significantly increased computing time.

Compatibility with previous versions

The setup of applications made with Version 2.2 can be used without modi-
fication with Version 2.3.

47

48

Version V2.4

Coherens Version : V2.4
previous release : V2.3
Revision : 447
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.4
Date of release : 2012-04-03
File (code) : coherensV2.4.tar.gz
File (manual) : manualV2.4.pdf

Implementations

implicit algorithm

A semi-implicit algorithm has been implemented for the free surface term
in the momentum equations. With this method, there is no longer need to
solve the depth-integrated momentum equations (unless a 2-D grid has been
selected). The stringent CFL stability criterium is relaxed by treating the
terms that provoke the barotropic mode in an implicit manner. Difference
with the previous explicit version is that the surface slope term is taken at
the new time level. Horizontal advection and diffusion are calculated, as
before, at the old time level.

After an explicit “predictor” step, velocities are corrected with the im-
plicit free surface correction in the “corrector” step. In this method, the free
surface correction follows from the inversion of the elliptic free surface cor-
rection equation obtained from the 2-D continuity equation. Because of the
non-linear dependency of the equations on the free surface height through
the h3-term, an iterative scheme has been implemented in addition.

For clarity, a new superscript is introduced indicating the iteration level.
As such ϕn+1,it+1 denotes the value of ϕ at the new time level n+1, obtained
after performing iteration it. The procedure consists of the following steps

49

1. At the first iteration ζn+1,1 = ζn and hn+1,1
3 = (h+ ζn)∆σ.

2. Using the notations, defined in Chapter 5 of the User Manual, the
momentum equations are solved at the predictor step using the latest
values for h3 and ζ:

hn+1,it
3 ũp − hn3un

hn3∆t
= fvn −Ah1(un)−Ah2(un)

− vn;u

hu1h
u
2

(un∆u
yh

uv
1 − vn;u∆u

xh
c
2)− θaAv(ũp)− (1− θa)Av(un)

+θvDmv(ũp) + (1− θv)Dmv(un)− gh
n+1,it
3

hn3

∆u
xζ

n+1,it

hu1

−∆u
xPa
ρ0hu1

+ F b;n
1 + F t;n+1

1 +Dmh1(τn11) +Dmh2(τn12) (23)

1

hn3

hn+1,it
3 ṽp − hn3vn

∆t
= −fun −Ah1(vn)−Ah2(vn)

− un;v

hv1h
v
2

(vn∆v
xh

uv
2 − un;v∆v

yh
c
1)− θaAv(ṽp)− (1− θa)Av(vn)

+θvDmv(ṽp) + (1− θv)Dmv(vn)− gh
n+1,it
3

hn3

∆v
yζ
n+1,it

hv2

−
∆v
yPa

ρ0hv2
+ F b;n

2 + F t;n+1
2 +Dmh1(τn21) +Dmh2(τn22) (24)

where the surface slope is taken at the previous iteration level. The
equations are solved as in the previous versions of COHERENS. The
predicted currents (up, vp) are obtained from (ũp, ṽp) after applying an
implicit correction for the Coriolis terms.

3. The free surface correction ζ ′ is defined as

ζ ′ = ζn+1,it+1 − ζn+1,it (25)

The corrected depth-integrated current is then obtained by adding an
implicit correction term

Un+1,it+1 = Up −Hn+1,it;u∆tg

h1

∂ζ ′

∂ξ1
(26)

V n+1,it+1 = V p −Hn+1,it;v∆tg

h2

∂ζ ′

∂ξ2
(27)

50

where (Up,V p) are the depth integrated values of (up,vp).

The values for ζ ′ follow from inversion of the elliptic equation that
arises by introducing (26)–(27) into the 2-D continuity equation

ζn+1,it − ζn

∆t
+

ζ ′

∆t
= − 1

h1h2

(
∆c
x (hu2U

p) + ∆c
y (hv1V

p)
)

+
1

h1h2

[
∆c
x

(
∆thu2g

uHn+1,it;u

hu1
∆u
xζ
′
)

+ ∆c
y

(
∆thv1g

vHn+1,it;v

hv2
∆v
yζ
′
)]

(28)

Equation (5.36) can be written as a linear system of equations with
non-zero values only on the diagonal and five sub-diagonals

Aijζ
′
i−1,j +Bi,jζ

′
i,j−1 + Cijζ

′
i,j +Dijζ

′
i,j+1 + Eijζ

′
i+1,j = Fij (29)

Since the decomposition (26)–(27) can no longer be used at open boun-
daries, Un+1 or V n+1 are firstly written as a sum of explicit and implicit
(involving ζ ′) terms which are then substituted into the continuity equa-
tion. Details of this procedure are given in the User Documentation.

4. The free surface elevation is updated

ζn+1,it+1 = ζn+1,it + ζ ′ (30)

5. The total water depth is updated

Hn+1,it+1 = Hn+1,it + ζ ′ (31)

6. The depth-integrated velocity fields are corrected using (26)–(27).

7. The values of Un+1,it+1 and V n+1,it+1 are evaluated at the open boun-
daries by applying the open boundary conditions.

8. The predicted values up, vp of the horizontal current are corrected to en-
sure that the depth-integrated currents obtained from equations (26)–
(27) are identical to the depth-integrated values of the 3-D current.
The corrected values are then given by

un+1 =
Hn+1,it;uup + Un+1,it+1 − Up

Hn+1,it+1;u
(32)

vn+1 =
Hn+1,it;vvp + V n+1,it+1 − V p

Hn+1,it+1;v
(33)

51

9. A convergence check is performed by comparing the norm of ζ ′ with a
threshold value ε, i.e.

‖ζ ′‖∞ = max(ζ ′) ≤ εimp (34)

A new iteration is started when the criterion is not satisfied.

At present, no algorithm has been programmed within the COHERENS
source code to solve the linear system, arising from the discretisation of the 2-
D continuity equation. Routines have, however, been provided to solve (5.37)
with the external PETSc library which is activated in the program by set-
ting the -DPETSC compiler option. Different algorithms (linear solvers and
preconditioners) are available, whose default values (Incomplete Cholesky
preconditioner in combination with a GMRES solver) can be changed by the
user. Since the solvers are iterative, a tolerance level has to be provided.

In summary, application of the implicit scheme involves two iteration
loops. The inner loop solves the linear system for ζ ′ and is controlled by the
routines of the PETSc library. The maximum number of iterations of the
outer loop (needed for convergence of the h3-factor) is set by the user with
the parameter maxitsimp.

open boundary condition

For reasons of compatibility with the implicit scheme, the open boundary
condition using the characteristic method with a zero normal gradient has
been rewritten without the term on the right hand side arising from the
continuity condition. This means that the previous formulation at U-open
boundaries

∂Ru
i

∂t
= ∓ c

h1h2

(
∂

∂ξ2
(h1V) +

∂h2
∂ξ1

U

)
+ fV +HF t

1 + τs1 − τb1 (35)

becomes
∂Ru

i

∂t
= fV +HF t

1 + τs1 − τb1 (36)

A similar change is made at V-nodes. A more appropriate implicit version
of this condition will be implemented in a future model version.

Model code

routines

The following files have been created or modified:

52

Hydrodynamic Equations.F90

hydrodynamic equation Main routines for solving the 2-D and/or 3-D
momentum and continuity equations using ei-
ther the explicit or implicit scheme

current pred Solve the 3-D momentum equations for the
predicted currents using either the explicit or
implicit (step 2 of the algorithm) method.

current 2d Solve the 2-D momentum equations. In case of
a 3-D grid (iopt grid nodim=3), the routine is
called only as part of the mode splitting algo-
rithm (explicit method). The routine is called
at all time steps with the explicit and implicit
scheme in case of a 2-D grid (iopt grid nodim).

correct free surf Performs steps 3 to 7 of the implicit algorithm.
The routine is not called in case of an explicit
scheme.

current corr Applies the corrector step for both the explicit
and implicit (step 8 of the algorithm) method.

surface elevation The same as before, but the routine is not
called by the implicit scheme.

Open Boundary Conditions.f90

open boundary conds impl Insert the terms arising from the open boun-
dary conditions at the appropriate places in
the matrix system (5.37).

petsc routines.f90
Series of routines for solving the system of linear equations using the
PETSc library. The routines are called only if the compiler option
-DPETSC has been defined.

Transport Equations.F90
The transport equations for currents have been (slightly) modified so
that they can be used both with the explicit and implicit method. The
changes are purely technical and not documented.

53

arrays

The following new arrays are defined for internal purposes only:

currents.f90

umvel old Depth-mean current u at the old time level tn

vmvel old Depth-mean current v at the old time level tn

depths.f90

deptotatu prev Total water depth at the U-nodes and the previous (outer)
iteration

deptotatv prev Total water depth at the V-nodes and the previous (outer)
iteration

dzeta Difference ζ ′ between the surface elevation at the next
and previous iteration

zeta old Surface elevation at the old time level tn

obconds.f90

obc2uvatu old Value of obc2uvatu at the old time level tn

obc2uvatv old Value of obc2uvatv at the old time level tn

switches

The following switches have been (re)defined in switches.f90:

iopt mode 2D Status of the 2-D mode. Its value is set internally and
cannot be changed by the user.

0: The 2-D mode is disabled. Transports U , V and surface
elevations ζ are set to their (zero) default values and
are not updated.

1: Transports and elevation are initialised, but not up-
dated in time

2: Transports and elevations are initialised and updated
in time

54

iopt mode 3D Status of the 3-D mode. Its value is set internally and
cannot be changed by the user.

0: The 3-D current are set to their default (zero) values
and are not updated.

1: The 3-D current is initialised, but not updated in time.

2: The 3-D current is initialised and updated in time.

iopt petsc Enables/disables the use of the PETSc library. Its value
is set internally and switched on if -DPETSC is provided
as compiler option.

0: PETSc is switched off

1: PETSc is switched on

iopt hydro impl Disables/enables the implicit scheme.

0: The momentum equations are solved with the explicit
scheme (default).

1: The momentum equations are solved using the implicit
algorithm. The compiler option -DPETSC must be set.

iopt curr Type of current fields.

0: Currents and elevations are set to their default (zero)
values and are not updated.

1: Currents and elevations are initialised but not updated
in time.

2: Currents are initialised but not updated in time.

iopt petsc solver Type of solver used by PETSc. For details, see the PETSc
User Manual.

1: Richardson (KSPRICHARDSON)

2: Chebychev (KSPCHEBYCHEV)

3: Conjugate Gradient (KSPCG)

4: Biconjugate Gradient (KSPBICG)

5: Generalised Minimal Residual (KSPGMRES)

6: BiCGSTAB (KSPBCGS)

7: Conjugate Gradient Squared (KSPCGS)

8: Transpose-Free Quasi-Minimal Residual (1) (KSPTFQMR)

55

9: Transpose-Free Quasi-Minimal Residual (2) (KSPTCQMR)

10: Conjugate Residual (KSPCR)

11: Least Squares Method (KSPLSQR)

12: Shell for no KSP method (KSPPREONLY)

iopt petsc precond Type of preconditioner used by PETSc. For details, see
the PETSc User Manual.

1: Jacobi (PCJACOBI)

2: Block Jacobi (PCBJACOBI)

3: SOR (and SSOR) (PCSOR)

4: SOR with Eisenstat trick (PCEISENSTAT)

5: Incomplete Cholesky (PCICC)

6: Incomplete LU (PCILU)

7: Additive Schwarz (PCASM)

8: Linear solver (PCKSP)

9: Combination of preconditioners (PCCOMPOSITE)

10: LU (PCLU)

11: Cholesky (PCCHOLESKY)

12: No preconditioning (PCNONE)

model parameters

physpars.f90

itsimp Current iteration number for the outer loop of the im-
plicit scheme

noitsimp Last iteration number of the outer loop

maxitsimp Largest allowed iteration number for the outer loop

dzetaresid Value of ‖ζ ′‖∞. Its value is saved at the last iteration
until the next time step.

dzetaresid conv Threshold value εimp used in the convergence criterium
for the outer loop

petsc tol Relative tolerance used by PETSc for solving the lin-
ear system. (The parameters atol, dtol, maxits used by
PETSc in the solution procedure are set to the PETSc
defaults).

56

timepars.f90

delt2d In the explicit (mode splitting) case, the time step for the 2-D
mode. In case an implicit scheme is taken, the time step used
for all transport equations.

Instructions for users

model setup

The following new switches and model parameters can be set by the user in
usrdef mod params or in the CIF. Default is given in parentheses.

iopt curr Type of current fields (2)

iopt hydro impl Selects explicit or implicit scheme (0)

iopt petsc solver Type of solver used by PETSc (5)

iopt petsc precond Type of preconditioner used by PETSc (5)

maxitsimp Maximum number of iterations allowed for the outer loop
(1)

dzetaresid conv Threshold value εimp (10−14)

petsc tol Relative tolerance used by PETSc (10−7)

compilation

The procedures have been changed so that COHERENS can be compiled
with or without the PETSc library. Note that the implicit scheme can only
be used in the latter case. Difference with the previous version is that the
file options.cpp has been removed and replaced by coherensflags.cmp. This
file is read by the Makefile and contains definitions of machine-dependent
macros. A default (empty) version, located in the comps directory is listed
below.

1 :#

2 :# Version - @COHERENScoherensflags.cmp V2.4

3 :#

4 :# $Date: 2013-04-23 10:59:00 +0200 (Tue, 23 Apr 2013) $

5 :#

6 :# $Revision: 556 $

57

7 :#

8:

9 :# options for compilation with CPP

10:## -DALLOC :allocates/deallocates local arrays

11:## -DMPI :includes MPI library

12:## -DCDF :includes netCDF library

13:## -DVERIF :enables output for verification procedure

14:## -DPETSC : includes PETSc library

15:

16:CPPDFLAGS =

17:

18:# netCDF directory path

19:#NETCDF PATH = /usr/local

20:

21:# netCDF library file

22:#NETCDF LIB FILE = netcdf

23:

24:# netCDF include options

25:#FCIFLAGS NETCDF = -I$(NETCDF PATH)/include

26:

27:# netCDF library options

28:#FLIBS NETCDF = -L$(NETCDF PATH)/lib -l$(NETCDF LIB FILE)

29:

30:# PETSc directories

31:#PETSC DIR = /home/patrick/petsc/petsc-3.1-p5

32:#PETSC ARCH = linux-gfort

33:

34:# PETSc include options

35:#CPPIFLAGS = -I$(PETSC DIR)/include -I$(PETSC DIR)/include/mpiuni

-I$(PETSC DIR)/$(PETSC ARCH)/include

36:#FCIFLAGS PETSC = -I$(PETSC DIR)/include -I$(PETSC DIR)/include/mpiuni

-I$(PETSC DIR)/$(PETSC ARCH)/include

37:

38:# environment variables for PETSc

39:# include $(PETSC DIR)/conf/variables

40:

41:# PETSc libary options

42:#FLIBS PETSC = $PETSC LIB

The macros, which can be defined by the user, are on the following lines

• Line 16: compiler options for the CPP (previously defined in options.cpp).

58

The following options are implemented

-DALLOC Enables allocation of local arrays

-DMPI Allows the use of MPI routine calls

-DCDF Allows the use of netCDF routine calls

-DVERIF Used to run the test cases with the verification procedure

-DPETSC Allows the use of PETSc routine calls.

• Line 19: installation path of the netCDF library. The compiler then
expects that the library file and the compiled netCDF modules are
found in respectively the directories $NETCDF PATH/lib and
$NETCDF PATH/include

• Line 22: name of the netCDF library file

• Line 25: compiler include options for netCDF

• Line 28: options for compilation with the netCDF library

• Line 31: directory path where the PETSc library is installed

• Line 32: directory where the PETSc installation for a specific fortran
compiler is located

• Line 35: CPP include options for PETSc

• Line 36: FORTRAN include options for PETSc

• Line 39: input file with definitions of PETSc variables

• Line 42: options for compilation with the PETSc library

The following changes are to be made by the user

• If -DCDF is defined on line 16, lines 19, 22, 25 and 28 must be uncom-
mented and changed where necessary.

• If -DPETSC is defined on line 16 then:

– The installation path names of PETSc must be defined on lines 31–
32. The meaning of PETSC DIR and PETSC ARCH is explained
in the PETSc manual.

59

– Either 35 or 36 must be uncommented (without further modifica-
tion), depending on the compiler. In case of a gfortran compiler,
only CPPIFLAGS needs to be defined, while for an intel compiler
only line 36 needs to be uncommented

– Lines 39 and 42 must be uncommented without further modifica-
tion.

The procedure for setting up the model for an implicit application is as
follows

• Install the PETSc library using the instructions given in the PETSc
installation manual.

• Add the -DPETSC compiler option and uncomment/change the lines
in coherensflags.cmp, as explained above

• Set the switch iopt hydro impl to 1 and (where needed) other parame-
ters, listed in the section model setup, in usrdef mod params.

installation

Test cases and user application can be installed on a working directory with
the shell script install test. An updated version is now available. The
script is now used with optional arguments

install test [-t test name] [-u test dir] [-o flag file]

where

-t Installs the pre-defined test case test name, e.g. cones.

-u Installs a user defined application. The setup Usrdef * and defruns
files are copied from directory test dir to the directory where
install test is executed.

-o Copies the file flag file with the user-specific compilation instruc-
tions (see above) to the file coherensflags.cmp in the working di-
rectory.

• The link COHERENS must be defined before using the script.

• The options -t and -u are mutually exclusive.

• If neither -t or -u are present, no application has been defined, but the
program can still be compiled.

60

• If -o is not present, the file coherensflags.cmp in the comps directory
is copied by default.

The script creates the following links

SOURCE directory path of the “main” source code

BSOURCE directory path of the biological source code

COMPS directory path of the files for compilation of the “main” code

BCOMPS directory path of the files for compilation of the biological source
code

SCR directory path of the scr directory

SETUP path of the directory where the files for the application are located

DATA directory path of the data directory

Test cases

• Test cases cones, front, pycno and csnsp are as before.

• All other test cases are run in either explicit or implicit mode, depend-
ing on whether -DPETSC has been specified.

• In the implicit case, the name of the test case file is as before but
with a “2” added after the name of the experiment. For example,
fredyA.tst and fredyA2.tst are the result files for experiment fredyA
and respectively the explicit and implicit case.

• The switches iopt mode 2D and iopt mode 3D are no longer user-defined.
The switch iopt curr is defined where necessary.

• Except for cones, front, pycno and csnsp, which are the same as
before, the explicit results may be (slightly) different from version V2.3.

• The zero gradient open boundary condition in test case rhone has
been replaced by the Orlanski condition.

Compatibility with previous versions

Installation and compilation have been changed with respect to the previous
Version 2.3. The switches iopt mode 2D and iopt mode 3D are no longer user-
defined. The type of current field is now defined with the new switch iopt curr
(see above). All other aspects of user setup are the same as previous. Note
that the results may become slightly different.

61

62

Version V2.4.1

Coherens Version : V2.4.1
previous release : V2.4
Revision : 469
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.4.1
Date of release : 2012-05-30
File (code) : coherensV2.4.1.tar.gz
File (manual) : manualV2.4.pdf

Implementations

A CPU performance study was conducted showing that some of the model
grid interpolations in array interp.f90 have a better CPU performance using
2-D masks and weight functions. The type of interpolation is defined with
the switch iopt structs which has now the following purpose:

0: The 3-D mask and weighting functions are replaced by 2-D versions in
some grid interpolation routines. This is the default value.

1: Grid interpolation is performed as before.

Since the structure module has not yet been implemented, it is recommended
to keep the default value.

Model code

The switch iopt structs is introduced in the following interpolation routines,
defined in array interp.f90:

Carr at U, Carr at UV, Carr at V, Uarr at C, Uarr at UV,

Uarr at UV, Varr at C, Varr at U, Varr at UV

63

Test cases

There are no changes.

Compatibility with previous versions

Version V2.4.1 is fully compatible with the previous one (V2.4).

64

Version V2.4.2

Coherens Version : V2.4.2
previous release : V2.4.1
Revision : 584
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.4.2
Date of release : 2013-04-16
Code : coherensV2.4.2.tar.gz
User documentation : User Documentation V2.4.2.pdf
Reference manual : Reference Manual V2.4.2.pdf

Implementations

Compared to the previous (V2.4.1) versions there are a few minor new im-
plementations.

Data flag for bathymetry

In the previous versions of COHERENS mean water depths must be non-
negative and grid points with a zero bathymetric value are considered as
permanent land points. In order to allow flooding of land areas, the sugges-
tion was made for the user to raise the mean water level by an amount (say)
href , while decreasing the sea surface elevation initally by the same amount.
In this way, the (initial) total water depth remains the same whereas grid
points on land with a height above the (real) mean water level below href
may become inundated.

Disadvantage of this method is that open boundary conditions, such as
tidal harmonics, need to be adapted as well, while it creates problems for
performing harmonic analysis. To overcome the problem, a data flag for
mean water depths has now been implemented. Default is zero, but this
value can be reset by the user. When a mean water depth takes the value

65

of this flag, the corresponding grid points are considered as permanent land
cells, otherwise the point is taken as wet or temporarily dry. Land topography
is then represented by negative mean water depths. Land flooding can then
be simulated without changing the reference mean water level.

Drag coefficient

Two changes are made with respect to the calculation of the bottom drag
coefficient. The expression used in the code is derived from the logarithmic
profile of the current in the bottom boundary layer

|u(z)| = u∗b
κ

ln(
z

z0
) (37)

where u2∗b = τb/ρ and z0 the bottom roughness length. From (37) one obtains

τb = ρCdb|ub|2 = ρCdb
(
u2b + v2b

)
(38)

with

Cdb =
[κ

ln(zb/z0)

]2
(39)

and zb is the height of the lowest C-node above the sea bed.

1. The log-layer approximation is only valid if zb � z0. This may create
a problem in case the grid cell is drying and zb → z0, Cdb → ∞. To
prevent too large drag coefficients, a lower limit has been imposed of the
form zb/z0 > ξmin. In the previous versions this limit was set internally
to a value of 1.5. In the current version ξmin is user-defined. Default
value is 2 yielding a maximum of 0.333 for Cdb.

2. When COHERENS is applied in depth averaged mode (iopt grid nodim=2),
the drag law was previously applied with zb = H/2 where H is the total
water depth. A more realistic method, implemented in the current ver-
sion is to take the depth average of (37). Provided z0 � H, equation
(39) is recovered with zb = H/e = 0.736H/2.

Model code

The following new parameters are defined

physpars.f90

66

depmeanflag Data flag marking land points in the bathymetry in m.
Default is 0.

zbtoz0lim Value of the critical ratio r for zb/z0. Default is 2.0.

syspars.f90

enap Euler’s number e = 2.718282.

The parameters depmean flag and zbtoz0lim can be defined by the user in
usrdef mod params or through the CIF.

Test cases

The following test cases have been modified:

• The 2-D experiments bohaiA, bohaiB, bohaiC are no longer defined
with a constant drag coefficient, but with a constant roughness height
(iopt bstres drag=3) using the same value as for the 3-D experiments
D–F.

• All inundation experiments flood2d, flood3d are now defined with
a uniform roughness height of 0.001 m, instead of a constant bottom
drag coefficient. This causes a stronger flow retardation during drying
phases. Test case output parameters are therefore significantly diffe-
rent.

Compatibility with previous versions

This version is compatible with previous versions without changes.

67

68

Version V2.5

Coherens Version : V2.5
previous release : V2.4.2
Revision : 576
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.5
Date of release : 2013-05-31
Code : coherensV2.5.tar.gz
User documentation : User Documentation V2.5.pdf
Reference manual : Reference Manual V2.5.pdf

Implementations

An extended sediment transport module has been implemented. This version
can therefore be considered as a major update of the code. Details are
described in Chapter 7 of the User Documentation. The main features are:

• a module for the advective-diffusive transport of suspended sediments

• different fractions for the simulation of graded sediments

• near-bed boundary conditions for sand as well as mud

• various methods for bed and total load transport

• different formulae for the settling velocity (including hindered settling,
flocculation), critical shear stress,

• turbulence damping caused by vertical stratification due to sediment
concentrations

• turbidity flows caused by horizontal sediment concentration gradients.

69

A first version of a surface wave module has been implemented. A full
current-wave interaction module is foreseen for a future COHERENS version.
The aim here is to provide wave parameters used in some of the formulations
for bed and total load transport.

Installation

file directories

Some changes are made to the file directory tree, as shown in Figure 1.1.

• A new directory physics has been created containing all files releated to
the “physical core” part of COHERENS. The /code/physics/source
and /code/physics/comps directories are the analogues of /code/source,
respectively /code/comps in the previous releases.

• The source code and compilation files for the new sediment model are
in /code/sediments/source and /code/sediments/comps.

• The /code/scr directory has been moved to the root directory /co-
herens/V2.5.

compilation

The following new macros are defined in coherensflags.cmp:

physics directory path

PHYSMOD = COHERENS/code/physics

sediment directory path

#SEDMOD = $(PHYSMOD)

SEDMOD = COHERENS/code/sediment

where PHYSMOD and SEDMOD are the path names of the physical and
sediment main directories. The first one should not be changed. For the
sediments the following options are available:

1. If SEDMOD is set to $(PHYSMOD), the code is compiled without sedi-
ments. Since the main code of COHERENS now contains “generic” calls
to a number of routines used for sediments, a number of dummy rou-
tines are provided in /physics/source. They are there only to prevent

70

V2.5

code sediments

comps

source

physics

comps

source

comps

source

biology

ptests

.....

cones

examples

setups

data

program directory tree
COHERENS V2.5

scr

utils decomp

tutorial

eclwf−xlf

osf−dig

linux−gfort

Figure 1.1: COHERENS directory structure

errors during compilation and do not contain actual code. A complete
listing of these routines (and related files) is presented in Chapter 34
of the User Documentation.

2. If SEDMOD is set to the sediment directory COHERENS/code/sediment,
the code is compiled with the COHERENS sediment module.

3. The user may provide his/hers own sediment module, in which case
SEDMOD should be set to a path where the user has located the
source code (i.e. in $(SEDMOD)/source) and the files for compila-
tion (in $(SEDMOD)/comps). Note that, in that case, the previously
mentioned generic routines need to be provided by the user.

Model code and setup

switches

The following switches have been added in switches.f90:
iopt curr wfall Type of formulation for the settling of particulate matter.

71

1: settling enabled without correction terms

2: settling enabled with the correction terms (7.117)–(7.118)
included. This option is currently disabled.

iopt kinvisc Formulation for kinematic viscosity.

0: user-defined uniform value kinvisc cst (default)

1: ITTC (1978) relation (7.24)

iopt obc sed (General) type of open boundary conditions for sediments.

0: default conditions at all open boundaries (default option)

1: non-default conditions for at least one open boundary
point

iopt scal depos Discretisation for the deposition (vertical advective flux at
the sea bed) of particulate matter.

0: Deposition flux is set to zero.

1: first order (upwind) scheme (default)

2: second order scheme using extrapolation

iopt sed Disables/enables (0/1) the activation of an external sedi-
ment module. Default is off.

iopt turb kinvisc Selects the type of background mixing mixing.

0: user-defined constant value vdifmom cst (default)

1: kinematic viscosity as selected by iopt kinvisc

iopt waves Type of wave input.

0: wave input disabled (default)

1: wave height, period and wave direction

2: wave height, period, velocity, excursion and direction

A parabolic eddy viscosity profile can be selected by setting iopt turb alg=6.

key ids

forcing attributes

io fincon Forcing id for final conditions. In the previous versions this key id
was the same as the one for initial conditions (io inicon).

io sednst output file(s) for sediment nesting

72

io sedobc definitions of open boundary conditions for sediment variables (file
number equals 1) or input of open boundary data (file number larger
than 1)

io sedspc (time-independent) arrays used for the setup of a sediment model
(particle attributes in the COHERENS sediment model)

io wavgrd surface wave grid

io wavsur surface wave data

other

igrd waves key id of a surface wave grid

ics sed initial condition file number for sediments

itm sed timer key id for sediment routines

model parameters and arrays

The following parameter can be defined in usrdef mod params or the CIF

kinvisc cst Constant value for the kinematic viscosity if iopt kinvisc=1. De-
fault is 1.E0-06 m/s2.

The following arrays need to be defined in usrdef nstgrd spec in case se-
diment fractions are used for nesting

nosednst(nonestsets) number of fractions for each sub-grid

intsed(nf,nonestsets) fraction numbers for each sub-grid

where nf equals the number of sediment fractions (defined in the setup of the
sediment model).

A series of wave arrays are introduced4

wavedir* Wave direction [rad]

wavexcurs* Near-bottom wave excursion amplitude [m]

wavefreq Peak wave frequency [rad/s]

waveheight* Significant wave height [m]

wavenum Wave number [1/m]

waveperiod* Peak wave period at [s]

4The arrays marked by a “*” can be used for input in usrdef surface data depending on
the value of iopt waves.

73

waveuvel Near-bottom wave orbital velocity in the X-direction [m/s]

wavevel* Near-bottom wave orbital velocity [m/s]

wavevvel Near-bottom wave orbital velocity in the Y-direction [m/s]

model output

The derived type arrays tsrvars, avrvars, analvars have an additional (optional)
attribute numvar representing the variable number in case of multi-variable
arrays, such as sediment fractions. The number then represents the last index
of the data variable (e.g. fraction number).

model routines

The following new routines have been implemented

• Diffusion Coefficients.F90

kinematic viscosity calculates kinematic viscosity as function of tempe-
rature using equation (7.24)

• math library.F90

gauss squad Returns the locations and weights for numerical
integration using the Gauss-Legendre quadrature
method.

poly all roots Finds all roots of a polynomial using Laguerre’s
method.

poly diff Divides two polynomials.

vector mag arr at* Calculates the magnitude and/or phase of a vector
array at the C-, U- or V-node.

vector mag var at* Calculates the magnitude and/or phase of a scalar
vector at the C-, U- or V-node.

For technical reasons a number of routines have been moved from turbu-
lence routines.F90 to the following files:

• buoyancy frequency to Density Equations.F90

• shear frequency to Hydrodynamic Equations.F90

• dissip lim conds, dissip to zlmix, zlmix lim conds, zlmix to dissip to Tur-
bulence Equations.F90

74

Calls to “generic” routines for sediments are made from the following
routines:

baroclinic gradient, buoyancy frequency, coherens main,

define out0d vals, define out2d vals, define out3d vals,

equation of sate, initialise model, inquire var,

set modfiles atts, set modvars atts, simulation end

Test cases

Seven additional test cases for sediments are implemented. For details see
Chapter 29 of the User Documentation.

Compatibility with previous versions

Except for the changes in coherensflags.cmp and the new test cases the setup
and test cases of version 2.5 are backwards compatible.

75

76

Version V2.5.1

Coherens Version : V2.5.1
previous release : V2.5
Revision : 613
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.5.1
Date of release : 2013-08-08
Code : coherensV2.5.1.tar.gz
User documentation : User Documentation V2.5.1.pdf
Reference manual : Reference Manual V2.5.1.pdf

Implementations

Novel features have been implemented for the generation of model grids in
the horizontal and vertical directions.

horizontal In this release an option has been provided to align a rectangular
model grid (i.e. grids for which h1(ξ1), h2(ξ2)) with specific features
such as coast lines, bathymetric contours or open boundaries by means
of a simple grid rotation. In the spherical case, this is achieved by a
coordinate transformation obtained by displacing the North Pole to a
new location, in the Cartesian case by rotating the coordinate axes.
For more details, see Section 4.1.3 of the User Documentation.

vertical A new switch iopt vtype transf is introduced which automatically
generates several vertical grid transforms discussed in Section 4.1.4 of
the Documentation.

77

Model code and setup

switches

iopt grid vtype transf This new switch allows to select automatically diffe-
rent types of vertical grids transformation. Default is
zero.

0 : uniform vertical grid (iopt grid vtype=1) or user-
defined

11: log-transformation (4.23) at the bottom following
Davies & Jones (1991) if iopt grid vtype=2

12: log-transformation (4.24) at the surface following
Davies & Jones (1991) if iopt grid vtype=2

13: transformation with enhanced resolution near the
bottom and/or the bottom as defined in Burchard
& Bolding (2002)

21: Song & Haidvogel (1994) transformation given by
(4.33) and (4.35) if iopt grid vtype=3

iopt grid node This switch allowed, in previous releases, to define bathymetry
and vertical grid either at C- or at corner nodes. How-
ever, the latter option seems to provide no real ad-
vantage and becomes problematic in channels having
a width of just one grid spacing. For this reason, the
first option will always be selected in the code and the
switch is no longer available in the current implemen-
tation.

model setup parameters

A rotated (Cartesian or rectangular spherical) grid is selected by defining the
following new attributes for the user-defined derived type variable surface-
grids(igrd model,1):

rotated must be set to .TRUE. in case of a rotated grid. Default is .FALSE..

gridangle grid rotation angle α (see Section 4.1.3) (decimal degrees). Must
be between 0 and 1800.

y0rot transformed latitude of the reference location in case of a rotated
grid (decimal degrees). Only used for spherical (rotated) grids.

78

The following additional setup parameters are introduced for making ver-
tical grid transforms (default in parentheses).

b SH Parameter b in the Song & Haidvogel (1994) vertical grid trans-
formation (0.1)

dl BB Parameter dl in the Burchard & Bolding (2002) vertical grid trans-
formation (4.26) (1.5)

du BB Parameter du in the Burchard & Bolding (2002) vertical grid trans-
formation (4.26) (1.5)

hcrit SH Parameter hcrit in the Song & Haidvogel (1994) vertical grid trans-
formation (0.1)

sigstar DJ Parameter σ∗ in the Davies & Jones (1991) vertical grid transfor-
mations (4.23) and (4.24) (0.0)

sig0 DJ Parameter σ0 in the Davies & Jones (1991) vertical grid transfor-
mations (4.23) and (4.24) (0.1)

theta SH Parameter θ in the Song & Haidvogel (1994) vertical grid trans-
formation (8.0)

Test cases

No new test cases have been defined for this release.

Compatibility with previous versions

This version is compatible with previous versions without changes.

79

80

Version V2.6

Coherens Version : V2.6
previous release : V2.5.1
Revision : 683
svn path : http://svn.mumm.ac.be/svn/root/coherens/versions/V2.6
Date of release : 2014-03-13
Code : coherensV2.6.tar.gz
User documentation : User Documentation V2.6.pdf
Reference manual : Reference Manual V2.6.pdf

Implementations

Modules for hydraulic structures and discharges have been installed within
this version of the code. A description can be found in Chapter 6 of the User
Documentation. New features are:

• Dry cells which can be taken as permanently dry during the simulation.

• Thin dams, which are defined as infinitely thin vertical walls. They
are located at velocity nodes and prohibit flow exchange and fluxes
of scalars between the two adjacent computational grid cells without
reducing the total wet surface and the volume of the model.

• Weirs which are similar to thin dams, except that a weir can be inun-
dated, in which case an energy loss is generated. This structure will
work as a thin dam in cases where the total water depth upstream of
the structure is less than the crest level of the structure. In this case
a blocking of flow exchange is imposed by the module. Groynes are
typical examples of weirs.

• Barriers which have an opening close to the bottom, where users can
define the width of the opening and the height of the sill.

81

• A discharge module has been implemented. Discharges are represented
as sources or sinks in the continuity, momentum and scalar equations
supplied at specified (fixed or moving) locations at the surface, bottom
or within the water column (e.g. discharge structures, pumping sta-
tions, discharge from moving ships . . .) by adding water to the water
column with a specified salinity, temperature or contimant concentra-
tion. The discharge may or may not have a preferential direction.

Model setup

To apply COHERENS with structures and/or discharges the following switches
and general parameters may need to be defined in Usrdef Model.f90.

iopt dischr Disables/enables (0/1) the discharge module.

iopt drycel Disables/enables (0/1) the dry cell module.

iopt thndam Disables/enables (0/1) the thin dam module.

iopt weibar Disables/enables (0/1) the weirs/barriers module.

numdis number of discharge locations

numdry number of dry cells

numthinu number of thin dams at U-nodes

numthinv number of thin dams at V-nodes

numwbaru number of weirs/barriers at U-nodes

numwbarv number of weirs/barriers at V-nodes

For details see Chapter 14.
The following additional key ids are available (where a “*” marks a forcing

with time series data which can be spread over multiple files).

io drycel dry cell locations

io thndam thin dam locations

io weibar weirs/barries locations and parameters

io disspc discharge specifiers

io disloc* discharge locations

io disvol* volume discharge data

io discur* momentum discharge data

io dissal* salinity discharge data

io distmp* temperature discharge data

82

A new setup file Usrdef Structures.f90 has been created for setting up
appplications with structures and/or discharges. The file contains the follo-
wing routines

• usrdef dry cells: setup of the dry cells module

• usrdef thin dams: setup of the thin dams module

• usrdef weirs: setup of the weirs/barriers module

• usrdef dischr spec: specifiers for the discharge module

• usrdef dischr data: defines discharge data

For more details see Chapter 18.

Model code

The following new source files have been created

1. structures.f90
Declaration of paramameters for structures and discharges. See Sec-
tion 33.18 in the Reference Manual.

2. Structures Model.f90
Program unit with all routines related to structures and discharges.
See Section 30.22 in the Reference Manual.

A list of most relevant changes in existing source files is given below.

1. Density Equations.F90

salinity equation Routines update dischr data and scalar discharge
(defined in Structures Model.f90) are called in
case the discharge module (for salinity) is acti-
vated.

temperature equation Routines update dischr data and scalar discharge
(defined in Structures Model.f90) are called in
case the discharge module (for salinity) is acti-
vated.

2. Grid Arrays.F90
A new routine update pointer arrays is created which sets currents to
zero at blocking velocity interfaces. The routine is called by the weirs/barriers
and inundation modules.

83

3. Harmonic Analysis.f90
The first dimensions of lstatprocs have been interchanges, i.e. lstat-
procs(nprocs,maxstats,nosetsanal) becomes lstatprocs(maxstats,nprocs,nosetsanal)

4. Hydrodynamic Equations.F90
A number of new calls (defined in Structures Model.f90 are imple-
mented in the following routines (depending on whether the weirs/barriers
or discharge module has been activated for the specific routine).

current pred : momentum discharge 3d, weirs loss, weirs sink

current 2d : momentum discharge 2d, weirs loss, weir sink

surface elevation: surface discharge

5. Inundation Schemes.f90
Routine update pointer arrays is called in mask function.

6. Model Finalisation.f90
The energy losses are written (in write phsics) to the final condition file
for weirs/barriers.

7. Model Initialisation.f90
If the weirs/barrier unit has been activated, two additional vector ar-
rays are read (in read phsics) from the initial condition file.

wbarelossu: energy losses at U-nodes

wbarelossv: energy losses at V-nodes

8. Nested Grids.F90
The first two dimensions of the arrays indexnstc, indexnstu, indexnstv,
indexnstuv have been interchanged.

9. array interp.f90
Bugs have been corrected in Cvar at U and VWvar at U.

10. grid.f90

• The arrays klevbotatu, klevbotatv, klevsuratu, klevsuratv have be-
come redundant and removed at all places in the source code.

• Parameters nobuloc1, nobvloc1, nobxloc1, nobyloc1 have be re-
named to respectively nobuloc ext, nobvloc ext, nobxloc ext, noby-
loc ext for transparancy.

84

• Parameters nobuloc2, nobvloc2, nobxloc2, nobyloc2 are not used in
the code and have therefore been removed.

11. inout paral.f90

combine write stats glb This generic routine replaces and extends the
old routine combine write obc. The routine com-
bines the elements of a real global array whose
elements in the first dimension are defined at
different domains on the parallel grid and writes
the resulting array to the appropriate output
file. For a syntax description see Section 31.11.

combine write stats loc This generic routine replaces the old routine
combine write stats. The routine combines ar-
rays defined locally on different sub-domains of
the parallel grid to a global array which is writ-
ten to the appropriate output file. For a syntax
description see Section 31.11.

12. paral comms.f90

combine stats glb This generic routine replaces and extends the old
routine combine obc. The routine combines the ele-
ments of a real global array whose elements in the
first dimension are defined at different domains on
the parallel grid. For a syntax description see Sec-
tion 31.17.

combine stats loc This generic routine replaces the old routine com-
bine stats. The routine combines arrays defined lo-
cally on different sub-domains of the parallel grid
to a global array. For a syntax description see Sec-
tion 31.17.

13. switches.f90
The switch iopt structs has been replaced (for transparency of the code)
by iopt arrint 3D having the same purpose. The switch is automatically
switched on if the weirs/barrizers module is activated.

Test cases

The following three new test cases have been implemented for testing the
structures and discharge modules.

85

drythin Simulates the tidal flows around obstacles, either represented by a
block of dry cells or a series of thin dams within an open channel.

weirbar A series of experiments are defined simulating the tidal flows over
weirs and barriers within an open channel.

discharges The experiments are designed to test the various options of the
discharge module.

Compatibility with previous versions

This version is compatible with previous versions without changes (taking
account of the minor modifications mentioned above). The old test cases can
be run as before.

86

	I Introductory Manual
	General Overview
	User experience
	Contents of the documentation

	Getting Started
	Introduction
	Short Linux introduction

	Running a test case
	Post-processing the results
	Modifying model setup
	Modifying model setup via CIF
	Adapting model set up via the Usrdef_ files

	Compilation and installation
	Compilation
	Running an application with external libraries
	Files for compilation and installation

	II Model description
	Physical model
	Model coordinates
	Coordinate transforms in the vertical

	Basic model equations
	3-D mode equations

	Model equations on reduced grids
	Turbulence schemes
	Algebraic schemes
	RANS models

	Surface boundary conditions
	Surface drag and exchange coefficients
	Bottom boundary conditions
	Lateral boundary conditions
	Open boundary conditions for the 3-D mode

	Harmonic analysis

	Numerical methods
	Model grid and discretisations
	Momentum equations
	General procedure for the explicit case
	Advection schemes and time discretisation
	Discretisation of 3-D horizontal advection
	Discretisation of 2-D horizontal advection
	Discretisation of vertical advection
	Diffusion coefficients for momentum
	Discretisation of the baroclinic pressure gradient
	Surface and bottom boundary conditions
	Lateral boundary conditions for the 2-D mode
	Lateral boundary conditions for the 3-D currents
	Solution of the discretised equations for momentum
	Elliptic equation for the free surface correction

	Drying/wetting and inundation schemes
	Scalar transport equations
	Time discretisation
	Discretisation of advection
	Discretisation of diffusion
	Boundary conditions

	Turbulence transport equations
	Discretisation of advection
	Boundary conditions

	Discretisations on reduced grids

	Structures and discharges model
	Weirs and barriers
	Weirs

	Discharges

	Sediment transport model
	Physical aspects
	Sediment properties
	Critical shear stress
	Settling velocity

	Bed load
	Introduction

	Total Load
	Van Rijn (2003)

	Suspended sediment transport
	Erosion and deposition

	Numerical methods
	Erosion-deposition

	III Description of the model code
	Program conventions and techniques
	Implementation of FORTRAN 90
	Specific program features

	Model input and output
	Default file names
	Formats of monitoring files
	Central input file
	Forcing files
	Standard format of forcing files

	User output files
	Format of files with user-defined output

	Model grid and spatial interpolation
	Model grid arrays
	Parameters and arrays related to the model grid

	Interpolation of model arrays at a different node
	Interpolation of a 2-D external data grid at the model grid
	Interpolation of model data at external locations

	Aspects of parallellisation
	Basic principles
	Domain decomposition
	Communications
	Implementation

	Structure of the model code
	Structure diagrams

	IV User manual
	Control parameters
	Parameters for monitoring
	Model switches
	Model parameters
	Parameters for surface data grids
	Attributes of forcing files

	Model grid and initial conditions
	Open boundary conditions
	2-D mode
	Open boundary specifiers for the 2-D mode

	3-D mode
	Open boundary specifiers for the 3-D mode

	Surface forcing and nesting
	2-D surface forcing
	Nesting

	Structure and discharge module
	Sediment transport module
	Sediment switches and parameters
	Sediment parameters

	User output
	Time series output
	Specifiers for time series output
	Time series output data

	Time averaged output
	Specifiers for time averaged output
	Time averaged output data

	Harmonic analysis
	Specifiers for harmonic output
	Harmonic output data

	V Test cases
	Advection schemes
	Test case cones
	Test case front
	Test case seich
	Test case fredy

	Turbulence and heat flux formulations
	Test case pycno
	Test case csnsp

	Density fronts and river plumes
	Test case river
	Test case plume
	Test case rhone

	Inundation schemes
	Test case flood2d
	Test case flood3d

	Shelf sea modelling
	Test case bohai

	Structure and discharge test cases
	Test case drythin
	Test case weirbar
	Test case discharges

	Sediment transport
	Test case bedload
	Test case totload
	Test case wavload
	Test case sedvprof
	Test case sedhprof
	Test case seddens
	Test case thacker

	Transformed model equations
	Solutions of the RANS equations

	VI Reference manual V2.5.1
	Description of external routines
	Description of modules routines
	Description of user defined routines
	Description of program variables
	Sediment reference manual
	External routines
	Allocate_Sediment_Arrays.f90
	Sediment_Bottom_Fluxes.F90
	Sediment_Density_Equations.F90
	Sediment_Equations.F90
	Sediment_Finalisation.f90
	Sediment_Initialisation.f90
	Sediment_Parameters.f90

	Module routines
	check_sediments.f90
	default_sediments.f90

	reset_sediments.f90
	sediment_output.f90
	sedvars_routines.f90

	User defined routines
	Usrdef_Sediment.f90

	Sediment model variables
	Sediment arrays
	Key ids of sediment variables
	Sediment model parameters
	Sediment switches

	Interfaces
	External routine interfaces
	Module routine interfaces
	User defined routines

