
Chapter 9

Model input and output

9.1 Classification of model files

The files, which can be created by the model fall to four different categories.
Exception is the file defruns (see Section 14.1).

1. Monitoring files

• log file

- Writes “tracing” information during the simulation.

- Informs about progress of the run upto a user-defined level.
A zero level means that the log file is not created. Note that
this is the default setting.

- For parallel runs a log file can be created by each process.

- The utility is useful for debugging the model code or for trac-
ing errors in model setup.

• error file

- Writes error messages.

- If an error is detected by an error checking routine, an error
message is written. In most cases the program aborts immedi-
ately afterwards while in other cases several checks are made
before the program aborts.

- For parallel runs an error file is created by each process.

• warning file

- Writes “warning” messages about suspicious values of setup
parameters or variables.

- The program will not abort.

391

392 CHAPTER 9. MODEL INPUT AND OUTPUT

• timer report
This is a file with information about the total execution time and
the percentages of time spent by different model “compartments”
(e.g. advection, 2-D mode, I/O, parallel communications, ...).

2. Central input file (CIF)

• This is a file with a complete list of parameter values used for the
setup of the application. This includes all the parameters which
can be defined by the user in the routines

usrdef init params, usrdef mod params, usrdef tsr params,

usrdef avr params, usrdef anal freqs, usrdef anal params

For further details see Chapters 14 and 20.

• The file is created on request by the user and can be used as input
to the program in a subsequent run.

• If the CIF is used for input, the above routines are no longer called
by the program.

3. Forcing files

• Those files include data arrays used for model setup, e.g. model
grid data, type of open boundary conditions, initial conditions,
forcing data (open boundaries and meteorological). The files with
open boundary data for nested sub-grids also fall within this cat-
egory.

• All files are used as input to the model, except the open boundary
data files for nested sub-grids which are defined as output files.

• All input files may be given in any user-defined format, but can
optionally be converted to a COHERENS standard format. The
output files are always in COHERENS standard format. The for-
cing file can be made “virtual”, if the forcing data are directly
defined by the user without using an external data file.

4. User output files

• These are output data files created by the program on request by
the user.

• Spatial and temporal resolution and type of output data are se-
lected by the user.

• The files are always in COHERENS standard format.

9.2. DEFAULT FILE NAMES 393

• Output specifications are defined in the user-defined routines usrdef tsr params
for time series, usrdef avr params for time averaged and usrdef anal params,
usrdef anal freqs for harmonic data output.

9.2 Default file names

Each file has a default name which can be reset by the user. A default file
name (in FORTRAN string format) is defined as:

title//’.’//filedesc//filenum//form//pid

for monitoring files, central input file(s) and forcing files, and

title//’_’//filenum//’.’//freqnum//filedesc//dim//form

for output files, where title is a simulation-specific title, filedesc the file de-
scriptor (representative for the type of the data in the file), filenum the file
number in case there is more than one file with the same descriptor, form
the format of the file, pid the process id number, dim the dimension of out-
put data and freqnum the frequency number. Values of these sub-strings are
discussed below.

9.2.1 title

Possible values are

runtitle Simulation title defined in defruns. This is the value used for moni-
toring files and CIF(s)(Categories 1 and 2).

intitle User-defined parameter used as prefix name for forcing files (Cate-
gory 3). Default value is runtitle.

outtitle User-defined parameter used as prefix name for user output files (Cat-
egory 4). Default value is runtitle.

9.2.2 pid

Process id number, used only for log and error files in parallel mode, empty
otherwise.

394 CHAPTER 9. MODEL INPUT AND OUTPUT

9.2.3 form

The file format can take the following values:

‘A’ ASCII format. This format is portable and readable but unsuitable for
large data sets because of its great comsumption of disk space and its
use of sequential storage.

‘U’ Unformatted binary format. Advantage is a more efficient use of disk
space. Disadvantages are that the file is (mainly) non-portable, not di-
rectly readable and uses sequential storage.

‘N’ NetCDF format (recommended). This format is portable, directly read-
able (with the netCDF ncdump utility). Data can be accessed directly by
specifying the appropriate record number. Only (possible) disadvantage
is that the netCDF library needs to be compiled first.

‘I’ This does not represent a specific data format but indicates that the
file is an ASCII information file containing the metadata of a forcing or
output data file.

Monitoring and central input files are always in ‘A’-format. Forcing and
output files may be in any of the first three formats.

9.2.4 filedesc

The string filedesc, further denoted as the “file descriptor”, is a character
string taking one of the values below.

1. Monitoring files

inilog log file with tracing information during the initialisation phase
of the simulation

runlog log file with tracing information during the main (time loop)
phase of the simulation

errlog error file

warlog warning file

timing timer report file

2. CIF file. Only one file is currently available.

cifmod parameters for model setup

3. Forcing files. The string filedesc refers to the contents of the file.

9.2. DEFAULT FILE NAMES 395

mppmod arrays defining the domain decomposition (parallel mode only)

inicon initial conditions

fincon final conditions

modgrd model grid, bathymetry and location of open boundaries

metgrd surface meteorological grid

sstgrd sea surface temperature (SST) grid

wavgrd surface wave grid

nstgrd locations of open boundary locations of nested sub-grids. A
file number needs to be supplied for each sub-grid.

sedspc specifiers (i.e. particle attributes) for the sediment module

1uvsur 1-D surface forcing

2uvobc 2-D mode open boundary forcing

3uvobc 3-D mode (baroclinic currents) open boundary forcing

salobc salinity open boundary forcing

tmpobc temperature open boundary forcing

sedobc sediment open boundary forcing

rlxobc definitions of relaxation zones

nstspc specifiers for sub-grid nesting

2uvnst 2-D open boundary data for the nested sub-grids. A file num-
ber is supplied for each sub-grid.

3uvnst baroclinic current open boundary data for the nested sub-
grids. A file number is supplied for each sub-grid.

salnst salinity open boundary data for the nested sub-grids. A file
number needs is supplied for each sub-grid.

tmpnst temperature open boundary data for the nested sub-grids. A
file number is supplied for each sub-grid.

sednst sediment open boundary data for the nested sub-grids. A file
number is supplied for each sub-grid.

metsur meteorological surface data

sstsur SST surface data

wavsur surface wave data

drycel dry cell locations

thndam thin dam locations

396 CHAPTER 9. MODEL INPUT AND OUTPUT

weibar weirs/barries locations and parameters

disspc discharge specifiers

disloc discharge locations

disvol volume discharges

discur momentum discharges

dissal salinity discharge

distmp temperature discharges

4. Output files.

tsout time series output

avrgd time averaged output

resid output of residuals

amplt output of harmonic amplitudes

phase output of harmonic phases

ellip output of tidal ellipse parameters

9.2.5 filenum

1. If the file descriptor equals 1uvsur, 2uvobc, 3uvobc, salobc, tmpobc or
sedobc, the contents of the file depends on the value of filenum:

• filenum=1: forcing specifiers (e.g. type of open boundary condi-
tions)

• filenum>1: forcing data itself. This allows to spread the data
over several files. For example, one file may contain open sea and
another river open boundary data. Each file can have its own
temporal resolution.

2. In case the file descriptor equals 2uvnst, 3uvnst, salnst,tmpnst or sednst,
the file contains nested data and filenum equals the number of the
associated sub-grid (between 1 and nonestsets).

3. In all other cases (including surface forcing data) the file number is not
used.

The maximum allowed file number is given by the system parameter Max-
IOFiles, defined in syspars.f90.

9.3. FORMATS OF MONITORING FILES 397

9.2.6 freqnum

Frequency number only used for output of amplitudes, phases and elliptic
parameters. Empty otherwise.

9.2.7 dim

The file dimension is only used for files of Category 4:

0 : 0-D output data grid

2 : 2-D output data grid

3 : 3-D output data grid

G: file containing the output grid coordinates but not the data themselves

9.3 Formats of monitoring files

9.3.1 Log files

Log files contain the following information:

• Some general information (e.g. current date, number of time steps,
value of 2-D CFL limit, ...).

• Each time a file is opened within the program, a message is written
with the name, unit number and format of the file. A similar message
is printed when a file is closed.

• A line starting with a number followed by ‘:’ and the name of a routine
means that the program entered this routine. The number denotes the
program routine level. Main program is at level 1, a routine called by
the main program has level 2, a routine called by another routine at
level n is at level n+1,

• The maximum number of levels traced by the log file, is defined by the
user. Note that large log files may be written if this maximum equals
or exceeds a value larger than 5. A value of 3 is recommended for
normal runs, a value of 7 if the log file is used for debugging. When the
program returns to the previous level (at the end of the called routine),
a line is written with the same level number followed by ‘:R’.

• Two separate log files can be written by the program: the inilog file
which traces information during the initialisation phase and is closed

398 CHAPTER 9. MODEL INPUT AND OUTPUT

when the program enters the time loop and the runlog file which is
active during the time loop only. The two program phases are discussed
in Section 12.2.

• If the maximum level for tracing is set to zero (default), no log file is
written.

• The following parameters can be defined by the user:

– The tracing level of the inilog and runlog files. In parallel mode,
different values can be selected for different sub-domains. Note
that, by default, all levels are set to zero so that no log file is
created.

– The names of the log files. In parallel mode, all inilog or runlog
files have the same standard name (which can be redefined by the
user) appended by a suffix with the process id number.

– A number of time steps can be defined after which the runlog
file is overwritten. Default is the total number of time steps (i.e.
information is written at all time steps and the file is never over-
written).

– The writing of an exit statement of the form ‘num:R’, where ‘num’
is the program level in the “log”-file on exit of a routine call if
.TRUE. (which is also the default).

For details see Section 14.2.2.

An example is given below.

Open file fredyA.runlogA on unit 1 type OUT (A)

2:update time

3:add secs to date int

3:R

3:convert date to char

3:R

3:day number int

3:R

2003/01/01;00:00:30,000

2:R

2:equation of state

2:R

2:baroclinic gradient

3:Zcoord arr

9.3. FORMATS OF MONITORING FILES 399

3:R

3:Carr at W: sal

3:R

...

2:R

2:hydrodynamic equations

3:current pred

3:R

3:current 2d

umax = 0.1765635E-02 (28,30)

vmax = 0.1765635E-02 (30,28)

3:R

...

Close file on unit 8 (A)

2:R

2:simulation end

3:rng finalize

3:R

3:timer report

Open file fredyA.timingA on unit 4 type OUT (A)

3:R

3:deallocate mod arrays

3:R

2:End of simulation: fredyA

Close file fredyA.warlogA on unit 3 (A)

Close file fredyA.errlogA on unit 2 (A)

Close file fredyA.runlogA on unit 1 (A)

Example 9.1: Part of the runlog file written by running test case fredyA.
Tracer level is 3.

The tracing information in the log files is implemented within the code by
defining the name of the routine and calling the routine log timer in on entry
and log timer out just before exiting the routine, e.g.

procname(pglev+1) = ’open boundary arrays’

CALL log timer in()

...

CALL log timer out()

The first line is the name of the routine which has been entered and will be
written to the log file. Routine log timer in sets the current program level by

400 CHAPTER 9. MODEL INPUT AND OUTPUT

increasing the counter pglev by 1 and writes the entry message. The call to
log timer out decreases pglev by 1. Note that if the first call is programmed
in the code, the second one must be inserted as well just before the RETURN
statement.

9.3.2 Error files

Error checking routines have been implemented in the model code. Errors
are always considered as fatal which means that the program aborts. The
program exit is usually executed after a series of checks. In this way several
error messages can be written to the errlog file. The file is created in the
beginning of the program. If no errors are found, the file is deleted at the end
of the simulation. Error checking is controlled by the following parameters
which can be set by the user:

• Level of error checking

0: Error checking is disabled and no file is created. This is the default.

1: Error checking is performed during initialisation only.

2: Error checking is enabled throughout the whole program (initiali-
sation, time loop and finalisation). This level is very useful for the
detection of read errors (e.g. end of file conditions) during an input
operation, but should be selected only to check the program for the
first time, since it may affect the CPU performance.

In parallel mode, different levels can be taken for different sub-domains.

• The name of the error file. In parallel mode, all errlog files have the
same standard name (which can be redefined by the user) appended by
a suffix with the process id number.

• The maximum number of error messages. Default is the system para-
meter MaxErrMesgs. The reason for limiting the number of messages,
is to avoid that an unnecessary amount of error messages is written,
since the program performs checks on model arrays as well.

The format of an errlog file is illustrated with the example below. Line
numbers are added for illustration purposes only.

1:Unable to open non-existing file: rhonegrid.dat

2:A total of 1 errors occurred in open filepars

3:Error type 1 : Not possible to open file

4:PROGRAM TERMINATED ABNORMALLY

9.3. FORMATS OF MONITORING FILES 401

Table 9.1: Key ids for error coding and associated error messages.

key id message
ierrno fopen Not possible to open file
ierrno fclose Unable to close file
ierrno read Read error
ierrno write Write error
ierrno fend End of file condition
ierrno input Wrong input values
ierrno inival Invalid initial values for model parameters or arrays
ierrno runval Invalid values for variables at run time
ierrno alloc Not possible to allocate arrays
ierrno arg Missing or invalid argument in a routine call
ierrno comms Communication error
ierrno MPI Error in a MPI call
ierrno CDF Error in a netCDF call

Example 9.2: Contents of an errlog file.

The first line gives a description of the error. When more than one error is
found, a message line is written for each error. The second line gives the name
of the routine where the error is found. The third line writes a message code
describing the general type of the error(s). Each message code is presented
in the program by a key id of the form ierrno *. A list of available key ids
is given in Table 9.1. The last line in example 9.2 is standard for all errlog
files.

The error code is programmed as follows:

• The number of detected errors is given by the parameter nerrs. Its
initial value is zero.

• A series of routines are implemented for checking setup variables. For
example, the model parameters, defined in
usrdef mod params, are checked in check mod params. These routines
are located in check model.f90 and fully described in Section 31.3. Er-
ror checking is also performed when a file is opened or closed, metadata
are read from a forcing file, or if a READ or an end-of-file condition oc-
curs.

• Within these “checking” routines, calls are made to one or more rou-
tines, defined in error routines.F90. For example, error limits var to
verify whether a switch has allowed values between certain limits. If

402 CHAPTER 9. MODEL INPUT AND OUTPUT

the routine detects an error, the error message is written and nerrs is
increased. These routines in error routines.f90 are fully described in
Section 31.8.

• The routine error abort is called with a typical error code, in the form of
a key id. If nerrs>0, lines 2–4 of the previous example are written with
an error message which corresponds to the given key id (see Table 9.1),
and the program aborts immediately afterwards. In parallel mode, the
error message will only be written by the processes where error(s) were
detected.

For example

CALL error lbound var(nc,’nc’,0,.FALSE.)

...

CALL error limits var(iopt grid htype,’iopt grid htype’,1,3)

...

CALL error lbound var date(CEndDateTime,’CEndDateTime’,CStartDateTime,&

& .FALSE.)

...

CALL error limits var(dlat ref,’dlat ref’,-90.0,90.0)

...

CALL error abort(’check mod params’,ierrno inival)

Example 9.3: Excerpts of routine check mod params illustrating the use of
error coding.

The first four calls are error checking routines. The first tests whether nc is
positive, the second whether the switch iopt grid htype has a value between
1 and 3, the third whether the end date is later than the start date, the
fourth whether the reference latitude is between -900 and 900. If a test turns
.FALSE., an error message is written. The routine error abort is called with
the key id ierrno inival, representative for invalid setup parameters.

9.3.3 Warning file

Besides error messages which are always fatal, the program may also write
warning messages which do not cause termination of the program. The utility
can be useful for debugging. The aim is to provide information for the user
about suspicous selection of model parameters (usually switches) or arrays
or to inform the user that certain setup parameters (defined by the user or
default) have been reset. For example, if a 2-D simulation is selected with

9.3. FORMATS OF MONITORING FILES 403

iopt grid nodim=2 and the vertical resolution parameter nz is set to a value
larger than 1, a warning message is issued that this parameter is reset to 1.
The following control parameters can be (re)set by the user:

• The warning utility is switched on by default, but can be disabled by
the user.

• The name of the warning file. In parallel mode, only one file is permit-
ted, written by the master process.

WARNING: value of integer parameter iopt mode 2D is set from 1 to 0

WARNING: value of integer parameter iopt dens grad is set from 1 to 0

WARNING: value of integer parameter iopt bstres drag is set from 3 to 0

WARNING: value of integer parameter nprocsx is set from 0 to 1

WARNING: value of integer parameter nprocsy is set from 0 to 1

Example 9.4: Contents of the warlog file produced by running test case
pycnoA.

9.3.4 Timer report file

A timer report is a file which contains information about the total execution
time and the percentages of time spent by different model “compartments”.
Each compartment has an associated time key id, listed in Table 9.2. The
following control parameters can be defined by the user:

• The type of information contained in the report.

0: No timer report is written. This is the default.

1: Only the total execution time is written.

2: Time information (in percentage of total time) is written for all
“timers”. In case of a parallel simulation, the percentages are given
for the process with the largest amount of time, the lowest amount
of time, as an average over all processes and for the master process.

3: The same as the previous case, but the time percentages are now
given for each individual process in addition. In the serial case,
behaviour is as for case 2.

• The name of the timer report file. In parallel mode, only one file is
permitted, written by the master process.

• The unit of time for writing the total execution can be written in sec-
onds, minutes, hours or days. Default is seconds.

404 CHAPTER 9. MODEL INPUT AND OUTPUT

Table 9.2: Timer key ids and their meaning.

key id description
itm hydro hydrodynamics
itm 1dmode water column mode calculations
itm 2dmode 2-D mode calculations
itm 3dmode 3-D mode calculations
itm dens total of density (including temperature and salinity) calculations
itm temp temperature
itm sal salinity
itm init initialisation procedures
itm trans transport routines
itm adv advection routines
itm hdif horizontal diffusion
itm vdif vertical diffusion (including turbulence modules)
itm phgrad baroclinic pressure gradient
itm input input operations
itm output output operations
itm inout total of input and output operations
itm com coll collect communication calls
itm com comb combine communication calls
itm com copy copy communication calls
itm com dist distribute communication calls
itm com exch exchange communication calls
itm com util utility communication calls
itm coms total of parallel communications
itm MPI total of MPI calls
itm CDF netCDF calls
itm arrint interpolation of model grid arrays
itm user usrdef routine calls
itm nest nesting procedures
itm libs internal library routine calls
itm astro astronomical tide
itm bconds boundary conditions
itm meteo meteorological routines
itm structs structures and discharges
itm wait wait calls
itm sed sediment model
itm bio biological model

9.3. FORMATS OF MONITORING FILES 405

The utility is useful for testing the CPU efficiency of a parallel decomposition.
An example of such test is given in Figure 11.1. Two examples are given
below using the same test case plumeC. The first shows the contents of the
timer report obtained from a serial run:

plume1C: 392s.822

Hydrodynamics : 39.152

2D mode : 12.125

3D mode : 27.939

Density : 26.150

Salinity : 22.338

Initialisation : 0.025

Transport : 50.284

Advection : 25.721

Horizontal diffusion: 13.541

Vertical diffusion : 18.450

Baroclinic pressure : 3.118

Input : 0.001

Output : 1.762

Input/output : 1.763

Array interpolation : 12.917

User calls : 14.979

Library calls : 4.284

Boundary conditions : 0.660

Example 9.5: Timer report for test case plumeC on a serial machine.

The second example is for the same test case now obtained on a parallel
machine with four processors and full timer information. For each timer
process there are now two lines. The first one gives statistical information
(maximum, minimum, mean and master). The second gives the times for
each individual processor. The report now contains additional information
about parallel communication calls, given by the compartments ‘Combine
comms’, ..., ‘MPI calls’. Note that the numbers given in ‘Parallel comms’ are
the sum of the corresponding ones for the combine, copy, exchange and utility
operations. This information is not given in the serial case since the times
related to parallel communications are, obviously zero, and zero times are
not printed in the table.

plume1C: 169s.783

Hydrodynamics : 44.064 44.009 44.037 44.044

406 CHAPTER 9. MODEL INPUT AND OUTPUT

44.044 44.064 44.009 44.039

2D mode : 18.971 18.889 18.939 19.172

19.172 18.958 18.889 18.971

3D mode : 25.648 25.584 25.620 25.568

25.568 25.648 25.584 25.627

Density : 27.339 27.210 27.285 27.176

27.176 27.339 27.210 27.306

Salinity : 23.711 23.659 23.677 23.677

23.677 23.711 23.659 23.660

Initialisation : 0.094 0.088 0.092 0.088

0.088 0.088 0.094 0.094

Transport : 45.924 45.189 45.574 45.046

45.046 45.189 45.610 45.924

Advection : 28.831 28.505 28.639 28.648

28.648 28.505 28.582 28.831

Horizontal diffusion: 12.218 11.796 12.077 12.074

12.074 11.796 12.218 12.216

Vertical diffusion : 10.446 10.359 10.412 10.189

10.189 10.359 10.446 10.431

Baroclinic pressure : 2.963 2.891 2.917 2.845

2.845 2.898 2.891 2.963

Input : 0.024 0.024 0.024 0.071

0.071 0.024 0.024 0.024

Output : 0.000 0.000 0.000 2.951

2.951 0.000 0.000 0.000

Input/output : 0.024 0.024 0.024 3.022

3.022 0.024 0.024 0.024

Combine comms : 3.351 3.239 3.290 0.353

0.353 3.239 3.280 3.351

Copy comms : 0.035 0.029 0.031 0.000

0.000 0.035 0.029 0.029

Exchange comms : 12.032 10.301 10.995 11.444

11.444 12.032 10.652 10.301

Utility comms : 0.524 0.424 0.465 0.530

0.530 0.424 0.448 0.524

Parallel comms : 15.731 14.206 14.782 12.328

12.328 15.731 14.409 14.206

MPI calls : 12.998 11.485 12.016 9.271

9.271 12.998 11.565 11.485

Array interpolation : 12.404 11.920 12.165 11.939

11.939 11.920 12.171 12.404

9.4. CENTRAL INPUT FILE 407

User calls : 9.842 9.694 9.776 10.525

10.525 9.694 9.792 9.842

Library calls : 2.544 2.385 2.463 2.645

2.645 2.544 2.461 2.385

Boundary conditions : 0.536 0.477 0.514 0.459

0.459 0.477 0.530 0.536

Example 9.6: Timer report for test case plumeC on a parallel machine
with four processors.

The following example shows how timing is implemented in the program

CALL log timer in(npcc)

...

CALL log timer out(npcc,itm adv)

A timer vector array is created at the start of the program and initialised to
zero. The routine log timer in is called in the beginning of the routine and
stores the current clock count value of the processor clock in the optional
argument npcc. The value is obtained by calling the FORTRAN 90 intrinsic
routine SYSTEM CLOCK. The call to log timer out is made at the last line
of the subprogram. The routine calls SYSTEM CLOCK again and subtracts
the new clock count from the previous one. This gives the time spent in the
routine, measured in clock counts. The result is added to the value stored
in the corresponding element of the “timer” vector array. The array index is
given by the timer key id itm adv. At the end of the program the array values
are converted to seconds, divided by the total execution time and multiplied
by 100. This gives the computation times associated with different timer key
ids in percentage.

9.4 Central input file

9.4.1 Syntax of a CIF

As shown in the example 9.7 below, each data line in the CIF has the following
syntax

varname = value 1, value 2, ..., value n

where varname is the FORTRAN name of a model parameter and value 1
to value n are the input values of the parameter, separated by the data
separator ‘,’. The file is read line-wise. The data strings value 1, value 2,

408 CHAPTER 9. MODEL INPUT AND OUTPUT

. . . are converted to the appropriate (numeric, logical, character) data format
associated with the variable FORTRAN variable varname. The following rules
apply

• If a comment character ‘!’ appears in the string, all characters in the
string, starting from this character are ignored. However, the comment
character can only appear at the first position of the data line (in which
case the entire line is ignored) or after the last character of the last data
string.

• If varname corresponds to a scalar, it is obvious that only one value
needs to be given and there is no data separator. In case of a vector,
the number of data can be lower than the size of the vector in which case
the non-defined values are set to their defaults. However if a vector has
a specified “physical” size, all expected data must be given. Examples
are the arrays index obc (physical size given by nconobc) or ntrestart
(physical size given by norestarts).

• If the model parameter represents a multi-dimensional array (of rank
m), the first m-1 data strings represent the vector index for the first m-1
dimensions, the subsequent the values for each array index of the last
dimension. As before, the number of values does not need to be equal
to the size of the last dimension, unless a “physical” size is expected.

• If the variable is a derived type scalar variable, the data strings rep-
resent the components in the order given by the TYPE definition in
datatypes.f90. Derived type arrays are initialised element-wise, i.e. a
separate line for each array element. The first data string(s) are the
array indices of the first, . . . , last array dimension.

• The first array index for the variable modfiles (see Section 14.7) is not
given by a numeric value but by its file descriptor in string format, e.g.
the string modgrid corresponds to the key id io modgrd whose numeric
value is set by the program to 3.

• If a data string contains only blanks or equals the null string, the value
of the corresponding model parameter is undefined, in which case its
default value is retained. When the CIF is written by the program, all
variables (even defaults) are defined in the data strings.

• No error occurs if a model scalar or array parameter does not appear
on any input line in which case the default value is retained.

9.4. CENTRAL INPUT FILE 409

• The characters in the string varname are case insentitive. If the CIF
is written by the program, the names are always given in upper case
characters.

• When a CIF is written by the program, all setup parameters are in-
cluded in the file. The values are either the default settings or the
re-defined values from a call to the appropriate usrdef routine or the
ones reset by the program after a call to a reset routine. Only excep-
tion to this rule is the parameter cold start which is always written as
.FALSE. and can only be changed by editing the CIF manually.

9.4.2 CIF blocks

A CIF file is composed of six blocks which much be given in a specific order.
Each block corresponds to a usrdef routine (given in parentheses below)
where the parameters could be defined in absence of the CIF.

1: monitoring parameters (usrdef init params)

2: general model setup parameters (usrdef mod params)

3: parameters for the setup of time series output (usrdef out params)

4: parameters for the setup of time averaged output (usrdef avr params)

5: definitions for making harmonic analyses (usrdef anal freqs)

6: parameters for harmonic output (usrdef anal params)

The following rules apply for CIF blocks

• A CIF block is terminated by a line whose first character is the block
separator ‘#’ (the rest of the line is ignored).

• A block may be empty but the separator lines must always be there.
This means that the file must contain 6 lines (including the last one)
starting with a ‘#’. An empty block is represented by two consecutive
separator lines.

• Empty blocks are written by the program in the following cases

– block 3: no time series output (iopt out tsers=0)

– block 4: no time averaged output (iopt out avrgd=0)

– blocks 5 and 6: no harmonic output (iopt out anal=0)

• On the other hand, the above blocks may be non-empty even when the
appropriate switch is zero. In that case the input lines are read by the
program, but no assignment is made.

410 CHAPTER 9. MODEL INPUT AND OUTPUT

CIF special characters

The CIF utility uses the following special characters

‘,’ separates the data strings on an input line

‘=’ separates the string varname from the data strings. Must be on all input
lines except those starting with a ‘!’ or ‘#’ character

‘!’ indicates the start of a comment. All characters on the input line at and
beyond this character are ignored.

‘#’ block separator. Must always be the first character on a separator line.

These special characters cannot be used in the string varname or in a data
string representing a string variable. For this reason the ‘,’ character, used
in previous versions as separator between seconds and milliseconds in a
date/time string is now replaced by a ‘:’.

9.4.3 Order of definitions

Each scalar or array parameter must be defined within its specific block.
However, the order of definition within a block is, in principle, irrelevant.
However, if the number of data on an input line depends on a “physical
size” dimension parameter defined by another model parameter, this size
parameter must appear on a previous data line.

COLD START = F

LEVPROCS INI = 3

LEVPROCS RUN = 3

INILOG FILE = plume1A.inilogA

RUNLOG FILE = plume1A.runlogA

RUNLOG COUNT = 8640

MAX ERRORS = 50

LEVPROCS ERR = 1

ERRLOG FILE = plume1A.errlogA

WARNING = T

WARLOG FILE = plume1A.warlogA

LEVTIMER = 3

TIMING FILE = plume1A.timingA

TIMER FORMAT = 1

#

IOPT ADV SCAL = 3

IOPT ADV TURB = 0

9.4. CENTRAL INPUT FILE 411

IOPT ADV TVD = 1

IOPT ADV 2D = 3

IOPT ADV 3D = 3

IOPT ARRINT HREG = 0

IOPT ARRINT VREG = 0

IOPT ASTRO ANAL = 0

IOPT ASTRO PARS = 0

IOPT ASTRO TIDE = 0

...

NC = 121

NR = 41

NZ = 20

NOSBU = 80

NOSBV = 120

NRVBU = 0

NRVBV = 1

NONESTSETS = 0

NORLXZONES = 0

NPROCS = 1

NPROCSX = 1

NPROCSY = 1

IDMASTER = 0

CSTARTDATETIME = 2003/01/03;00:00:00:000

CENDDATETIME = 2003/01/06;00:00:00:000

DELT2D = 30.

IC3D = 10

ICNODAL = 0

TIME_ZONE = 0.

NTOBCRLX = 0

ATMPRES REF = 101325.

BDRAGCOEF CST = 0.

BDRAGLIN = 0.

...

NCONOBC = 1

INDEX OBC = 46

NCONASTRO = 0

ALPHA BLACK = 0.2

ALPHA MA = 10.

ALPHA PP = 5.

BETA MA = 3.33

BETA XING = 2.

412 CHAPTER 9. MODEL INPUT AND OUTPUT

...

NORESTARTS = 1

NTRESTART = 8640

INTITLE = plume1A

OUTTITLE = plumeA

MAXWAITSECS = 3600

NOWAITSECS = 0

NRECUNIT = 4

NOSETSTSR = 4

NOSTATSTSR = 0

NOVARSTSR = 9

NOSETSAVR = 0

NOSTATSAVR = 0

NOVARSAVR = 0

NOSETSANAL = 1

NOFREQSANAL = 1

NOSTATSANAL = 0

NOVARSANAL = 7

MODFILES = inicon,1,1,U,R,plumeA.phsicsU,0,0,0,0,F,F,

MODFILES = modgrd,1,1,A,R,plumeA.modgrdA,0,0,0,0,F,F,

MODFILES = 2uvobc,1,1,U,R,plume1A.2uvobc1U,0,0,0,0,F,F,

MODFILES = 3uvobc,1,1,A,R,plume1A.3uvobc1A,0,0,0,0,F,F,

MODFILES = salobc,1,1,A,R,plume1A.salobc1A,0,0,0,0,F,F,

MODFILES = 2uvobc,2,1,U,R,plume1A.2uvobc2U,0,0,1,0,F,F,

MODFILES = 3uvobc,2,1,A,R,plume1A.3uvobc2A,0,0,1,0,F,F,

MODFILES = salobc,2,1,A,R,plume1A.salobc2A,0,0,1,0,F,F,

SURFACEGRIDS = 1,1,0,0,1000.,1000.,0.,0.

#

TSRVARS = 1,0,0,0,0,0.,C,width,Plume width,km,

TSRVARS = 2,0,0,0,0,0.,C,hfront,Plume length,km,

TSRVARS = 3,92,2,0,0,0.,C,umvel,X-component of depth-mean current,m/s,

Depth-mean current

TSRVARS = 4,101,2,0,0,0.,C,vmvel,Y-component of depth-mean current,m/s,

Depth-mean current

TSRVARS = 5,81,2,0,0,0.,C,zeta,Surface elevation,m,

TSRVARS = 6,93,3,0,0,0.,C,uvel,X-component of current,m/s,Current

TSRVARS = 7,102,3,0,0,0.,C,vvel,Y-component of current,m/s,Current

TSRVARS = 8,106,3,0,0,0.,C,wphys,Physical vertical velocity,m/s,

Physical current

TSRVARS = 9,111,3,0,0,0.,C,sal,Salinity,PSU,

IVARSTSR = 1,6,7,8,9

9.4. CENTRAL INPUT FILE 413

IVARSTSR = 2,6,7,8,9

IVARSTSR = 3,6,7,8,9

IVARSTSR = 4,1,2,3,4,5

TSR3D = 1,T,U,plumeA_1.tsout3U,T,,2

TSR3D = 2,T,U,plumeA_2.tsout3U,T,,2

TSR3D = 3,T,U,plumeA_3.tsout3U,T,,2

TSR0D = 4,T,A,plumeA_4.tsout0A,T,,2

TSR2D = 4,T,U,plumeA_4.tsout2U,T,,2

TSRGPARS = 1,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,1,120,1,1,40,1,20,20,1,0,

8640,360

TSRGPARS = 2,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,30,30,1,1,40,1,1,20,1,0,

8640,360

TSRGPARS = 3,T,F,F,F,2003/01/03;00:00:00:000,3,0,0,1,120,1,5,5,1,1,20,1,0,

8640,360

TSRGPARS = 4,T,F,F,F,2003/01/03;00:00:00:000,2,0,0,30,30,1,1,1,1,1,1,1,0,

8640,12

#

#

INDEX ANAL = 46

NOFREQSHARM = 1

IFREQSHARM = 1,1

#

ANALVARS = 1,92,2,0,0,0.,C,umvel,X-component of depth-mean,current,m/s,

Depth-mean current

ANALVARS = 2,101,2,0,0,0.,C,vmvel,Y-component of depth-mean,current,m/s,

Depth-mean current

ANALVARS = 3,81,2,0,0,0.,C,zeta,Surface elevation,m,

ANALVARS = 4,93,3,0,0,0.,C,uvel,X-component of current,m/s,Current

ANALVARS = 5,102,3,0,0,0.,C,vvel,Y-component of current,m/s,Current

ANALVARS = 6,106,3,0,0,0.,C,wphys,Physical vertical velocity,m/s,

Physical current

ANALVARS = 7,111,3,0,0,0.,C,sal,Salinity,PSU,

IVARSANAL = 1,1,2,3,4,5,6,7

IVARSELL = 1,1,10

IVECELL2D = 1,1,2

IVECELL3D = 1,1,2

RES2D = 1,T,A,plumeA_1.resid2A,T,,2

RES3D = 1,T,A,plumeA_1.resid3A,T,,2

AMP2D = 1,1,T,A,plumeA_1.1amplt2A,T,,2

PHA2D = 1,1,T,A,plumeA_1.1phase2A,T,,2

ELL2D = 1,1,T,A,plumeA_1.1ellip2A,T,,2

414 CHAPTER 9. MODEL INPUT AND OUTPUT

ELL3D = 1,1,T,A,plumeA_1.1ellip3A,T,,2

ANALGPARS = 1,T,F,F,F,2003/01/03;06:00:00:000,3,0,0,1,120,1,1,40,1,1,20,1,0,

8640,1440

#

Example 9.7: (Parts) of the CIF produced for test case plumeA.

9.5 Forcing files

9.5.1 General aspects

The forcing files, used in the program code, can be divided into two cate-
gories:

1. Files, which have no time dependence, are called “initialisation” files
and may contain the following information:

• definitions of a domain decomposition

• model grid and bathymetry

• definitions of 2-D external grids

• locations of the open boundary points of a nested sub-grid

• specifiers for 2-D and 3-D open boundary conditions or 1-D water
column forcing

• specifiers for nesting

• definition of relaxation zones.

2. Time series files provide forcing data at one or more specific times,
given as a sequence of time record(s).

• initial conditions1

• open boundary data

• 1-D water column forcing data

• 2-D and 3-D open boundary data written for nested sub-grids

• data defined on a 2-D external (meteorological, SST) grid.

The standard structure of forcing files is composed of

1Initial conditions can be given at one or more specific times.

9.5. FORCING FILES 415

• a metadata (header) section with global information about the file
(called “global attributes” in netCDF language) and information about
the data variables within the file (“variable attributes” in netCDF lan-
guage)

• a data section with the values of the data. The time coordinate (if
present) is considered as an additional data variable.

The general structure of the file is then2

[Names and values of dimensions]

Global attributes

...

[Attributes of the time coordinate]

Attributes of variable 1

...

Attributes of variable 2

...

Attributes of variable n

[First data time]

Values of variables 1

...

Values of variables n

[Second data time

...]

Example 9.8: General layout of a forcing file.

The time coordinate and data time(s) need, obviously, only to be present
in case of time series files. Note that the data times must be stored in
chronological order, but may be given at non-regular time intervals. The
detailed formats of forcing files are discussed in the subsections below.

As mentioned in Section 8.1.4, the properties (or attributes) of data files
are stored into the derived type variable FileParams (see Example 8.7 for a
full list of file attributes). The attributes of the forcing files are stored into
the 3-D derived type array modfiles:

TYPE (FileParams), DIMENSION(MaxIOTypes,MaxIOFiles,2) :: modfiles

where

2The lines in [] are not always present. For example, metadata and data for the time
coordinate variable are only needed in case of a forcing file containing time series.

416 CHAPTER 9. MODEL INPUT AND OUTPUT

MaxIOTypes is the maximum number of file descriptors

MaxIOFiles is the maximum allowed number of files per file descriptor.

An element of the array modfiles can be generically written as
modfiles(iddesc,ifil,iotype) where

iddesc denotes the file descriptor key id. The program name of the key id has
the form io filedesc where filedesc is one of the descriptor strings given
in Section 9.2.4. For example, io 2uvobc is the key id for all forcing
files related to 2-D open boundary conditions.

ifil is the file number. In some cases, this number is always 1. For exam-
ple, the input data for defining the model grid are stored in one file
with key id io modgrd. On the other hand, if a main grid contains sev-
eral nested sub-grids, a data file has to be written for each requested
parameter and each sub-grid. The parameter is represented by its key
id, while the file number denotes the number of the sub-grid. A sim-
ilar approach is followed for open boundary data. For example, the
temperature profiles at open boundaries can be obtained from several
data files having the same key id io tmpobc.

iotype equals 1 for an input and 2 for an output file. All forcing files used
by the model are input files, except for the files written for sub-grid
nesting. However, the program provides the possibility to re-write the
data obtained from an input file to a separate output file in COHE-
RENS format. This is further discussed in Section 14.7.

In the current implementation, the global attributes of the files are defined
by components of the derived type variable modfiles and are given below. A
(∗) at the end of the description means that the attribute can be defined by
the user.

status∗ Status of the file

‘0’ : The file is not activated.

‘N’ : The file is activated but its contents are defined by the user
in a usrdef routine. The user needs to decide whether the
data are obtained from some external file or that the file only
exists virtually and the data are defined without making a
file connection. The option is only available for input files.

‘R’ : The file is activated and its contents are read from a data file
in COHERENS standard format. The option is only allowed
for input data (iotype=1).

9.5. FORCING FILES 417

‘W’: The data are written in COHERENS standard format. This
is always the case for nesting data. The option can be used
to re-write data, previously obtained in a user format. The
file can then be used in a subsequent simulation with the ‘R’
status. Since the file is created for output, the iotype index
must be 2.

form∗ Format of the data file.

‘A’: ASCII

‘U’: unformatted binary

‘N’: netCDF

filename∗ Name of the file. If the file status is ‘R’ or ‘W’ and the name of
the file is not defined by the user, a default name is given (see
Section 9.2). If the status is ‘N’, the name is either defined by
the user or unknown. In the latter case the file name is set to ‘N’
(unknown) which may mean that the data are not obtained from
a file.

info∗ An info (‘I’) file is produced with the metadata information only.

end type∗ Switch to decide what action needs to be taken when an end of file
condition occurs during a read. See Section 14.7.2 for details.

0: The program aborts with an error message

1: The program continues, no further attempt will be made to
read data.

2: The program continues, a next attempt to read the data will
be made after nowaitsecs seconds.

tlims(1:3)∗ Start/end/step time indices (i.e. times measured in units of the
2-D time step delt2d). The data will be updated after ABS(tlims(3))
×delt2d seconds. If tlims(3)>0, time interpolation will be per-
formed. If tlims(3)<0, the data values are set to the one obtained
from the latest data record earlier than the current time.

iunit File unit number. This parameter is set internally and cannot be
reset by the user.

iostat The I/O status of the file.

-1: An error occurred when the program attempted to open the
file.

0 : The file is not open.

418 CHAPTER 9. MODEL INPUT AND OUTPUT

1 : The file is open and the file pointer is located at the start or
before the end of the file.

2 : The file pointer is located at the end of the file (i.e. an end
of file condition will occur on a next read).

3 : An end of file condition did occur.

nocoords Number of coordinate arrays within the file, equal to 0 for an
initialisation file and 1 for a time series file.

novars Number of (non-coordinate) data variables within the file.

filedesc A string with a description of the file.

timeid netCDF variable id of the time coordinate.

The variable attributes are stored into a temporary derived type array

TYPE (VariableAtts), DIMENSION(nocoords+novars) :: varatts

where nocoords and novars are the global attributes stored in the modfiles
array. The following attributes are defined:

f90 name A string with the FORTRAN name of the variable as used in
the program. Maximum length is set by the system parameter
lenname.

long name A string with a description of the variable. Maximum length is
set by the system parameter lendesc.

vector name If the variable represents a vector component, a string with a
description of the vector. Its value must be the same for all
components of the same vector. Maximum length is set by the
system parameter lendesc.

units A string describing the variable’s unit. The string has a format
recognised by UNIDATA’s Udunits package (UDUNITS, 1997)
which can be considered as an internationally recognised stan-
dard. Maximum length is set by the system parameter lenunit.

data type The type of variable as given in the second column of Table 8.1
(e.g. real type for a REAL variable).

ivarid The variable’s key id.

nrank If the variable is an array, the rank of the array. Otherwise, the
variable is a scalar and the rank is zero.

shape If the variable is an array, a vector with the array size(s) in each
dimension. In case of a scalar the shape vector has one element
with the value 1.

9.5. FORCING FILES 419

9.5.2 Data contents of forcing files

Table 9.3 provides a general listing of the data contents for each type of
forcing file. Note that the exact number of data variables depends on how
the model has been set up. A detailed discussion is given in the Part IV.

The integer parameters used in the table for array dimensioning have the
following meaning:

nprocs number of processes in case the program is applied in parallel
mode

ncloc X-dimension of the local grid

nrloc Y-dimension of the local grid

nc X-dimension of the global (computational) grid

nr Y-dimension of the global (computational) grid

nz number of vertical layers

nhalo halo size (=2)

nf number of sediment fractions

nconobc number of tidal constituents at open boundaries

nconastro number of astronomical constituents used for the tidal force

nobu number of open boundary points at U-nodes

nobv number of open boundary points at V-nodes

nodat number of data (e.g. discharge locations)

numdis number of discharge locations

numdry number of dry cells

numthinu number of thin dams at U-nodes

numthinv number of thin dams at V-nodes

numwbaru number of weirs/barriers at U-nodes

numwbarv number of weirs/barriers at V-nodes

n1dat X-dimension of an external 2-D data grid

n2dat Y-dimension of an external 2-D data grid

nonestsets number of nested sub-grids

nhdat number of sub-grid open boundary locations in the horizontal used
for nesting of a sub-grid

nzdat number of vertical levels at sub-grid open boundary locations used
for nesting of a sub-grid

420 CHAPTER 9. MODEL INPUT AND OUTPUT

nonodes number of “nodal” grids used for interpolation in nesting proce-
dures (see Section 17.3.3)

novars number of data variables (meteorological, wave, discharge) varia-
bles in a data file

numprofs number of vertical profiles in a 3-D open boundary forcing file

nofiles number of data files (plus one) for open boundary or 1-D surface
forcing

norlxzones number of zones for application of the relaxation scheme near open
boundaries

Table 9.3: Data contents for each type of input forcing file. In the last column ‘R’,
‘I’, ‘C’, ‘D’ denote respectively real, integer, character and derived type data.

key id file number variable shape type
io mppmod 1 nc1procs nprocs I

nc2procs nprocs I
nr1procs nprocs I
nr2procs nprocs I

io inicon 1 udvel (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo) R
vdvel (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo) R
zeta (0:ncloc+1,0:nrloc+1) R
uvel (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz) R
vvel (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz) R
wvel (0:ncloc,0:nrloc,nz+1) R
temp (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz) R
sal (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz) R
tke (1-nhalo:ncloc+nhalo,

1-nhalo:nrloc+nhalo,nz+1) R
zlmix (1-nhalo:ncloc+nhalo,

1-nhalo:nrloc+nhalo,nz+1) R
dissip (1-nhalo:ncloc+nhalo,

1-nhalo:nrloc+nhalo,nz+1) R
bdragcoefatc (0:ncloc,0:nrloc) R
zroughatc (0:ncloc,0:nrloc) R
fnode obc nconobc R
phase obc nconobc R
fnode astro nconastro R
phase astro nconastro R
obcsalatu (nobu,nz,0:2) R

(Continued)

9.5. FORCING FILES 421

Table 9.3: Continued

obcsalatv (nobv,nz,0:2) R
obctmpatu (nobu,nz,0:2) R
obctmpatv (nobv,nz,0:2) R
obc2uvatu (nobu,2) R
obc2uvatv (nobv,2) R
obc3uvatu (nobu,nz,2) R
obc3uvatv (nobv,nz,2) R

io inicon 2 cvol (1-nhalo:ncloc+nhalo,1-
nhalo:nrloc+nhalo,nz,nf)

R

zroughatc sed (0:ncloc,0:nrloc) R
bed fraction (0:ncloc,0:nrloc,nf) R
obcsedatu (nobu,nz,0:2,nf) R
obcsedatv (nobv,nz,0:2,nf) R

io modgrd 1 gxcoordglb (nc,nr) R
gycoordglb (nc,nr) R
gscoordglb (nc-1,nr-1,nz+1) R
depmeanglb (nc-1,nr-1) R
iobu nobu I
jobu nobu I
iobv nobv I
jobv nobv I

io metgrd 1 xcoord (n1dat,n2dat) R
ycoord (n1dat,n2dat) R

or surfgridglb (nc,nr) D
io sstgrd 1 xcoord (n1dat,n2dat) R

ycoord (n1dat,n2dat) R
or surfgridglb (nc,nr) D

io wavgrd 1 xcoord (n1dat,n2dat) R
ycoord (n1dat,n2dat) R

or surfgridglb (nc,nr) D
io nstgrd 1:nonestsets xcoord nhdat R

ycoord nhdat R
or hnests (nhdat,nonodes) D

zcoord (nhdat,nzdat) R
io sedspc 1 dp nf R

rhos nf R
tau cr cst nf R
ws cst nf R

(Continued)

422 CHAPTER 9. MODEL INPUT AND OUTPUT

Table 9.3: Continued

io 1uvsur 1 gxslope amp nconobc R
gxslope pha nconobc R
gyslope amp nconobc R
gyslope pha nconobc R
zeta amp nconobc R
zeta pha nconobc R

2:nofiles ciodatetime – C
data1d novars R

io 2uvobc 1 ityp2dobu nobu I
iloczobu nobu I
itypintobu nobu I
ityp2dobv nobv I
iloczobv nobv I
itypintobv nobv I
no2dobc 2:nofiles I
iobc2dtype 2:nofiles I
index2dobc (nobu+nobv:2:nofiles) I
ud2obu amp (nobu,nconobc) R
zetobu amp (nobu,nconobc) R
ud2obu pha (nobu,nconobc) R
zetobu pha (nobu,nconobc) R
vd2obv amp (nobv,nconobc) R
zetobv amp (nobv,nconobc) R
vd2obv pha (nobv,nconobc) R
zetobv pha (nobv,nconobc) R

2:nofiles ciodatetime – C
data2d (nodat,novars) R

io 3uvobc 1 itypobu nobu I
iprofobu nobu I
itypobv nobv I
iprofobv nobv I
noprofsd 2:nofiles I
indexprof (nobu+nobv,2:nofiles) I
iprofrlx norlxzones I

2:nofiles ciodatetime – C
psiprofdat (numprofs,nz) R

io salobc 1 itypobu nobu I
iprofobu nobu I

(Continued)

9.5. FORCING FILES 423

Table 9.3: Continued

itypobv nobv I
iprofobv nobv I
noprofsd 2:nofiles I
indexprof (nobu+nobv,2:nofiles) I
iprofrlx norlxzones I

2:nofiles ciodatetime – C
psiprofdat (numprofs,nz) R

io tmpobc 1 itypobu nobu I
iprofobu nobu I
itypobv nobv I
iprofobv nobv I
noprofsd 2:nofiles I
indexprof (nobu+nobv,2:nofiles) I
iprofrlx norlxzones I

2:nofiles ciodatetime – C
psiprofdat (numprofs,nz) R

io sedobc 1 itypobu nobu I
iprofobu nobu,nf I
itypobv nobv I
iprofobv nobv,nf I
noprofsd 2:nofiles I
indexprof (nf*(nobu+nobv),2:nofiles) I
indexvar (nf*(nobu+nobv),2:nofiles) I
iprofrlx norlxzones I

2:nofiles ciodatetime – C
psiprofdat (numprofs,nz) R

io rlxobc 1 inodesrlx 2 I
idirrlx norlxzones I
ityprlx norlxzones I
iposrlx norlxzones I
jposrlx norlxzones I
ncrlx norlxzones I
nrrlx norlxzones I

io nstspc 1 nestcoords nonestsets I
nohnstglbc nonestsets I
nohnstglbu nonestsets I
nohnstglbv nonestsets I
novnst nonestsets I

(Continued)

424 CHAPTER 9. MODEL INPUT AND OUTPUT

Table 9.3: Continued

inst2dtype nonestsets I
io metsur 1 ciodatetime – C

surdata (n1dat,n2dat,novars) R
io sstsur 1 ciodatetime – C

surdata (n1dat,n2dat,1) R
io wavsur 1 ciodatetime – C

surdata (n1dat,n2dat,novars) R
io drycel 1 idry numdry I

jdry numdry I
io thndam 1 ithinu numthinu I

jthinu numthinu I
ithinv numthinv I
jthinv numthinv I

io weibar 1 iwbaru numwbaru I
jwbaru numwbaru I
oricoefu numwbaru R
oriheightu numwbaru R
orisillu numwbaru R
wbarcoefu numwbaru R
wbarcrestu numwbaru R
wbarmodlu numwbaru R
iwbarv numwbarv I
jwbarv numwbarv I
oricoefv numwbarv R
oriheightv numwbarv R
orisillv numwbarv R
wbarcoefv numwbarv R
wbarcrestv numwbarv R
wbarmodlv numwbarv R

io disspc 1 kdistype numdis I
mdistype numdis I

io disvol 2:nofiles ciodatetime – C
disdata (nodat,novars) R

io discur 2:nofiles ciodatetime – C
disdata (nodat,novars) R

io dissal 2:nofiles ciodatetime – C
disdata (nodat,novars) R

io distmp 2:nofiles ciodatetime – C
(Continued)

9.5. FORCING FILES 425

Table 9.3: Continued

disdata (nodat,novars) R

9.5.3 Standard format of forcing files

9.5.3.1 ASCII files

The ASCII format is illustrated with two examples. They are taken from a
case study for the North Sea (not discussed in the current version of the ma-
nual). Examples 9.9 and 9.10 show the contents of the files nsp89.2uvobc1A
and nsp89.metsurA. The line numbers have been added in the header section
for illustrative purposes only and do not appear in the actual file.

1 : 1

2 :V2.0

3 :2010/06/17;09:22:34

4 :Type of open boundary conditions for 2-D mode

5 : 0

6 : 17

7 : 620 3 1 29

8 :ityp2dobu

9 :Type of 2-D open boundary condition at U-nodes

10:-

11: 607 3 1 29

12:iloczobu

13:Position of elevation points with respect to U-open boundaries

14:-

15: 616 3 1 29

16:itypintobu

17:Switch to allow momentum advection near U-open boundaries

18:-

19: 621 3 1 111

20:ityp2dobv

21:Type of 2-D open boundary condition at V-nodes

22:-

23: 608 3 1 111

24:iloczobv

25:Position of elevation points with respect to V-open boundaries

26:-

27: 617 3 1 111

28:itypintobv

426 CHAPTER 9. MODEL INPUT AND OUTPUT

29:Switch to allow momentum advection near V-open boundaries

30:-

31: 624 3 1 2

32:no2dobc

33:Number of input data per input file

34:-

35: 612 3 1 2

36:iobc2dtype

37:Type 2-D open boundary data input

38:-

39: 611 3 2 140 2

40:index2dobc

41:Map of data points to open boundary locations

42:-

43: 637 5 2 29 9

44:ud2obu amp

45:Amplitude of X-component of depth-integrated current at U-open

boundaries

46:m^2/s

47: 648 5 2 29 9

48:zetobu amp

49:Amplitude of surface elevation at U-open boundaries

50:m

51: 638 5 2 29 9

52:ud2obu pha

53:Phase of X-component of depth-integrated current at U-open boundaries

54:radian

55: 649 5 2 29 9

56:zetobu pha

57:Phase of surface elevation at U-open boundaries

58:m

59: 640 5 2 111 9

60:vd2obv amp

61:Amplitude of Y-component of depth-integrated current at V-open

boundaries

62:m^2/s

63: 651 5 2 111 9

64:zetobv amp

65:Amplitude of surface elevation at V-open boundaries

66:m

67: 641 5 2 111 9

9.5. FORCING FILES 427

68:vd2obv pha

69:Phase of Y-component of depth-integrated current at V-open boundaries

70:radian

71: 652 5 2 111 9

72:zetobv pha

73:Phase of surface elevation at V-open boundaries

74:m

ityp2dobu

11 11 ...

iloczobu

1 1 ...

itypintobu

0 0 ...

ityp2dobv

11 11 ...

iloczobv

1 1 ...

itypintobv

0 0 ...

no2dobc

127 13

iobc2dtype

1 3

index2dobc

1 2 ...

ud2obu amp

0.4421976 0.5311887 ...

zetobu amp

0.3082999E-01 0.3055999E-01 ...

ud2obu pha

4.054574 4.223073 ...

zetobu pha

5.249485 5.269729 ...

vd2obv amp

0.5446934 0.7153571 ...

zetobv amp

0.4053500E-01 0.3966500E-01 ...

vd2obv pha

2.541209 2.624729 ...

zetobv pha

0.2956865 0.3112219 ...

428 CHAPTER 9. MODEL INPUT AND OUTPUT

Example 9.9: Contents of the file nsp89.2uvobc1A in standard ASCII
COHERENS format.

• Lines 1–6 give the values of the attributes:

header type the type of header which (in the current version) is
always 1 for a forcing file

coherens version the current program version number, which is the same
for all forcing files

creation date the exact date and time when the file was created

filedesc a description of the file

nocoords the number of coordinate variables (as defined in
modfiles)

novars the number of (non-coordinate) variables (as defined
in modfiles)

• In case of a time series file, the next four lines list the attributes of the
time coordinate (see Example 9.10).

• The remaining lines 7–74 show the attributes of the data variables.

• The attributes of each variable are given on four lines

– line 1: the attributes ivarid, data type, nrank, shape, giving 3+nrank
integer parameters on the input line

– line 2: the f90 name attribute

– line 3: the long name attribute

– line 4: the units attribute

• The total number of header lines is then given by 6+4*(nocoords+novars).

• The data section gives the values of the variables in the order in whichv
they have been defined in the header section.

– In case of an initialisation file, the name of the variable is written
on one line, followed by its values.

– In case of a time series file, the value of the time coordinate is
written first using the date/time string format (see Section 8.2.2),
the data values are written as in the previous case except that the
data values are preceded by an empty line (for illustration this line
is presented in the example by the variable’s name in []). The

9.5. FORCING FILES 429

line next to the values of the last variable is the date/time of the
next time record,

The contents of an ASCII forcing file are to be read sequentially, i.e. line
by line.

• The lines in the header either contain a character string or integer pa-
rameters which makes it easier to read them using the character (‘A’)
format (strings) or free (∗) format (integers). The header information
does not provide additional information for the program, since the at-
tributes are already known internally, but are used for error checking
only. For users who like to read the data from some external program,
the metadata provides useful information (number, rank and shape of
the data variables).

• The data values (except the date/time string in time series files) are
either of type INTEGER or REAL and are read in FORTRAN array order,
e.g.

READ (iunit,IntegerFormat) itypintobu

READ (iunit,RealFormat) uwindatc

where the string format specifications IntegerFormat and RealFormat are
system parameters, defined in syspars.f90. Values are

IntegerFormat=’(50I11)’; RealFormat=’(50G16.7)’

It is advised not to change these values (except for the repeat specifi-
cation) since they allow to represent the data with the highest possible
precision.

1 : 1

2 :V2.0

3 :2010/06/17;09:22:34

4 :Meteo input surface data

5 : 1

6 : 7

7 : 952 1 2 23 -1

8 :time

9 :Time

10:date/time

11: 410 5 2 50 28

430 CHAPTER 9. MODEL INPUT AND OUTPUT

12:uwindatc

13:X-component of surface wind

14:m/s

15: 411 5 2 50 28

16:vwindatc

17:Y-component of surface wind

18:m/s

19: 402 5 2 50 28

20:atmpres

21:Atmospheric pressure

22:N/m^2

23: 401 5 2 50 28

24:airtemp

25:Air temperature

26:degC

27: 407 5 2 50 28

28:relhum

29:Relative humidity

30:-

31: 403 5 2 50 28

32:cloud cover

33:Cloud cover

34:-

35: 404 5 2 50 28

36:evapminprec

37:Evaporation minus precipitation rate

38:kg/m^2/s

1989/01/01;00:00:00,000

[uwindatc]

0.8044688E-06 -0.2852140 ...

[vwindatc]

9.202050 8.167472 ...

[atmpres]

102672.9 102768.9 ...

[airtemp]

13.85400 13.92300 ...

[relhum]

0.9958699 0.9328000 ...

[cloud cover]

0.6250000 0.6250000 ...

[evapminprec]

9.5. FORCING FILES 431

0.7811863E-05 0.7811863E-05 ...

1989/01/01;03:00:00,000

[uwindatc]

-0.3340597 -0.5992587 ...

[vwindatc]

9.566232 8.569798 ...

[atmpres]

102548.8 102661.5 ...

[airtemp]

13.95900 13.99600 ...

[relhum]

0.7983300 0.8664200 ...

[cloud cover]

0.6250000 0.6250000 ...

[evapminprec]

0.7811863E-05 0.7811863E-05 ...

1989/01/01;06:00:00,000

...

Example 9.10: Contents of the file nsp89.metsurA in standard ASCII
COHERENS format.

9.5.3.2 unformatted binary files

When the unformatted binary or ASCII format is selected, the same meta-
data and data are written in the forcing file. Differences are that in case of
a binary format:

• String attributes, numerical attributes and data values are written in
binary format. The form depends on the internal binary presentation
of each (character, integer, real) data type. Common types are known
as ‘NATIVE’, ‘LITTLE ENDIAN’, ‘BIG ENDIAN’, ‘IBM’.

• The file can be read only on machines which use the same binary pre-
sentation3.

• Reading of the file or conversion to a readable format can only be
performed using some external (post-processing) program.

• The data are written sequentially as in the ASCII case but without a
format specification.

3Some compilers provide a CONVERT specifier in a FORTRAN OPEN call allowing to
make a conversion between two different binary formats.

432 CHAPTER 9. MODEL INPUT AND OUTPUT

• Data values are no longer preceded by a blank line.

• Prime advantage of this format is that each numerical value (defined
in single precision) only uses (in most cases) only 4 bytes of disk space,
reducing the required storage space by a factor 3 to 4 compared to the
ASCII format.

The program provides an utility (using the info file attribute) to view the
metadata contents of a binary file without additional programming tools.
If the info attribute is set to .TRUE., the program will create an additional
“info” file with all metadata information in ASCII. An example is given below
for the rhone test case.

header type: 1

coherens version: V2.0

creation date: 2010/06/18;16:49:53

file description: Model grid

nocoords: 0

novars: 6

32 5 1 31

gsigcoord

Sigma coordinates on uniform grid

-

105 5 2 108 50

depmeanglb

Global mean water depth at C-nodes

m

43 3 1 65

iobu

Global X-index of U-open boundaries

-

51 3 1 65

jobu

Global Y-index of U-open boundaries

-

45 3 1 110

iobv

Global X-index of V-open boundaries

-

53 3 1 110

jobv

Global Y-index of V-open boundaries

9.5. FORCING FILES 433

-

Example 9.11: Contents of rhoneA.modgrdI info file, giving all metadata
information included in the rhone grid file.

9.5.3.3 netCDF files

The netCDF format is binary and non-sequential. The data are organised in
records which can be read by specifying the appropriate record number as
argument to a netCDF routine call. Moverover, the contents of the file, or
part of the contents (metadata only, values of one or more data variables) can
easily by converted to an ASCII format, which is the so-called CDL (network
Common Data form Language) format. For a full description of CDL, see
Russ et al. (2004).

• Data and metadata are stored, in a platform-independent way, as (non-
sequential) internal records.

• Reading and writing is performed by netCDF routine calls described
in the netCDF manual (Pincus & Rew, 2008). Specific routines are
available in the program to write metadata and data into a standard
COHERENS format, similar to the one used in the ASCII and unfor-
matted binary formats.

• An alias (starting with cf 90) is defined in the code for each netCDF
routine call (starting with NF90). The aim is a more efficient imple-
mentation of future netCDF versions.

• Although the file is in a compressed binary format, the contents or part
of the contents of a netCDF file can be converted to ASCII form with
the ncdump utility:

ncdump file.cdf

ncdump -h file.cdf

ncdump -v var file.cdf

The first form rewrites the file file.cdf to standard output in ASCII
format. The second rewrites the metadata section only, the third form
rewrites the metadata section and the values of the variable var.

.
Example 9.12 shows the metadata file in CDL format of the initial con-

dition file for the North Sea case study. Differences with the ASCII a binary
formats are:

434 CHAPTER 9. MODEL INPUT AND OUTPUT

• Variable dimensions must be defined with a given name.

• The f90 name, nrank and shape attributes are no longer explicitly de-
fined, but provided implicitly when a netCDF variable is defined with
the NF 90 def var library call.

• Global attributes are the same as before except for the cdfversion at-
tribute giving the current netCDF version used by the model and the
timerec attribute giving the number of time records in the file.

Reading and writing of netCDF metadata and data is performed using the
routines of the netCDF library. A detailed description is found in the netCDF
FORTRAN 90 manual (Pincus and Rew, 2008).

netcdf nsp89

dimensions:

tlendim = 23 ;

T = UNLIMITED ; // (2 currently)

X002 = 141 ;

Y002 = 128 ;

...

Z020 = 2 ;

variables:

char time(T, tlendim) ;

time:ivarid = 952 ;

time:long name = "Time" ;

time:units = "date/time" ;

float udvel(T, Y002, X002) ;

udvel:ivarid = 157 ;

udvel:long name = "X-component of depth-integrated current" ;

udvel:units = "m^2/s" ;

float vdvel(T, Y003, X003) ;

vdvel:ivarid = 166 ;

vdvel:long name = "Y-component of depth-integrated current" ;

vdvel:units = "m^2/s" ;

float zeta(T, Y004, X004) ;

zeta:ivarid = 113 ;

zeta:long name = "Surface elevation" ;

zeta:units = "m" ;

float uvel(T, Z005, Y005, X005) ;

uvel:ivarid = 162 ;

uvel:long name = "X-component of current" ;

9.5. FORCING FILES 435

uvel:units = "m/s" ;

float vvel(T, Z006, Y006, X006) ;

vvel:ivarid = 171 ;

vvel:long name = "Y-component of current" ;

vvel:units = "m/s" ;

float wvel(T, Z007, Y007, X007) ;

wvel:ivarid = 176 ;

wvel:long name = "Transformed vertical velocity" ;

wvel:units = "m/s" ;

float temp(T, Z008, Y008, X008) ;

temp:ivarid = 205 ;

temp:long name = "Temperature" ;

temp:units = "degC" ;

float sal(T, Z009, Y009, X009) ;

sal:ivarid = 204 ;

sal:long name = "Salinity" ;

sal:units = "PSU" ;

float tke(T, Z010, Y010, X010) ;

tke:ivarid = 304 ;

tke:long name = "Turbulent kinetic energy" ;

tke:units = "J/kg" ;

float fnode obc(T, X011) ;

fnode obc:ivarid = 353 ;

fnode obc:long name = "Nodal factors of tidal constituents at open boundaries" ;

fnode obc:units = "-" ;

float phase obc(T, X012) ;

phase obc:ivarid = 360 ;

phase obc:long name = "Astronomical phases at open boundaries" ;

phase obc:units = "radian" ;

float obcsalatu(T, Z013, Y013, X013) ;

obcsalatu:ivarid = 625 ;

obcsalatu:long name = "Storage array for salinity at U-open boundaries" ;

obcsalatu:units = "PSU" ;

float obcsalatv(T, Z014, Y014, X014) ;

obcsalatv:ivarid = 626 ;

obcsalatv:long name = "Storage array for salinity at V-open boundaries" ;

obcsalatv:units = "PSU" ;

float obctmpatu(T, Z015, Y015, X015) ;

obctmpatu:ivarid = 627 ;

obctmpatu:long name = "Storage_array_for_temperature_at_U-open_boundaries" ;

obctmpatu:units = "degC" ;

436 CHAPTER 9. MODEL INPUT AND OUTPUT

float obctmpatv(T, Z016, Y016, X016) ;

obctmpatv:ivarid = 628 ;

obctmpatv:long name = "Storage array for temperature at V-open boundaries" ;

obctmpatv:units = "degC" ;

float obc2uvatu(T, Y017, X017) ;

obc2uvatu:ivarid = 629 ;

obc2uvatu:long name = "Storage array for 2-D mode at U-open boundaries" ;

obc2uvatu:units = "-" ;

float obc2uvatv(T, Y018, X018) ;

obc2uvatv:ivarid = 630 ;

obc2uvatv:long name = "Storage array for 2-D mode at V-open boundaries" ;

obc2uvatv:units = "-" ;

float obc3uvatu(T, Z019, Y019, X019) ;

obc3uvatu:ivarid = 631 ;

obc3uvatu:long name = "Storage array for 3-D mode at U-open boundaries" ;

obc3uvatu:units = "m/s" ;

float obc3uvatv(T, Z020, Y020, X020) ;

obc3uvatv:ivarid = 632 ;

obc3uvatv:long name = "Storage array for 3-D mode at V-open boundaries" ;

obc3uvatv:units = "m/s" ;

// global attributes:

:header type = 1 ;

:coherens version = "V2.0" ;

:creation date = "2010/06/21;17:49:36" ;

:filedesc = "Physical initial conditions" ;

:cdfversion = "3̈.6.2¨ of" ;

:nocoords = 1 ;

:novars = 19 ;

:timerec = 2 ;

data:

time =

"1989/01/01;00:00:00,000",

"1989/12/25;00:00:00,000" ;

udvel =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.08447912, 0.3973033, 0, ...

vdvel =

0, ...

zeta =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.607709, 1.618565, 1.631894, 0, ...

9.5. FORCING FILES 437

uvel =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.006357468, 0.006396886, 0, ...

vvel =

0, ...

wvel =

0, ...

temp =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10.34, 10.34, 10.34, 0, 0, 0, ...

sal =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35.4, 35.4, 35.4, 0, 0, 0, 35.33, ...

tke =

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.114186e-05, 5.660635e-06, ...

fnode obc =

1.165938, 1.165991, 1.10667, 0.9655771, 0.9624547, 0.9655771, ...

phase obc =

5.17733, 2.496852, 0.2368603, 5.49324, 5.436536, 2.75393, 3.223492, ...

obcsalatu =

0, ...

obcsalatv =

0, ...

obctmpatu =

0, ...

obctmpatv =

0, ...

obc2uvatu =

-20.18008, -20.35524, -18.70897, -17.60509, -17.31932, -16.37582, ...

obc2uvatv =

-0.6839569, 2.442981, 1.570055, 0.996551, 1.981653, 2.819804, ...

obc3uvatu =

0, ...

obc3uvatv =

0, ...

Example 9.12: Metadata of the initial condition file for the North Sea test
case in netCDF CDL format.

438 CHAPTER 9. MODEL INPUT AND OUTPUT

9.6 User output files

9.6.1 General aspects

The procedures for defining user output are discussed at length in Chap-
ter 20. Only a summary, needed to understand the formatting of the data
file discussed in the next subsection, will be given here.

The following forms of user output can be defined

• Time series: output of model data at regular time intervals.

• Time averaged: output of model data averaged over a specific period
and repeated at regular time intervals.

• Harmonic: output of harmonically analysed model data over a specific
period and repeated at regular time intervals. Output data may consist
of residuals, amplitudes, phases and elliptic parameters.

User output is organised by defining so-called “output sets”. Each set
is characterised by a specific spatial and time resolution and a number of
selected variables. Each output set (except harmonic output) may contain 3
files at most:

• 0-D file: “globally” evaluated data (e.g. domain averaged temperature)
or data without a spatial dimension (e.g. width of a river plume)

• 2-D file: 2-D (horizontal) data without a vertical dimension (e.g. water
levels)

• 3-D file: 3-D data having both horizontal and vertical dimensions

For each file a derived type variable is defined of TYPE(FileParams). The
following attributes can be defined by the user:

defined Activates or disactivates the file if set to .TRUE. or .FALSE. res-
pectively.

form Format of the output file

‘A’: ASCII

‘U’: unformatted binary

‘N’: netCDF

info An info (‘I’) file is produced with the metadata information if
.TRUE.

9.6. USER OUTPUT FILES 439

header type No header (metadata) will be written if set to zero. The option
is not available for netCDF files.

The attributes iunit, iostat, nocoords, novars and timeid are defined internally
and have the same meaning as for forcing files (see Section 9.5.1).

The user is free to choose the output grid which may be the full model
grid, a subsection of the model grid or a completely irregular grid as is the
case for data at station locations. In case of a 2-D or 3-D grid, the horizontal
grid may be taken as one point so that the 2-D data reduce to one data value
and the 3-D data to one vertical profile per variable and time step.

The attributes of the output grid are stored in a derived type variable
of TYPE(OutGridParams). The definitions of its attributes are given in Sec-
tion 20.1.1.3, but repeated here for clarity.

gridded If .TRUE. (default), the output data are defined on a sub-grid of
the model grid (or the whole model grid). If .FALSE., the data
are taken at a number of irregularly spaced locations (“station”
data) defined by the user.

grid file If .TRUE., the coordinates of the output grid will be written on
a separate output file. Otherwise, they are written within the
data file itself (default).

land mask A land mask will be applied if .TRUE. and gridded=.TRUE.. This
means that the gridded data will be stored as a vector excluding
land points. Advantage may be a significant reduction in disk
space. Disadvantage is that the data need to be restored on the
original output grid by a postprocessing program. Default is
.FALSE.

time grid If .TRUE., the data grid is taken as time-dependent (since the
vertical positions in a σ-grid depend on time). Surface elevations
will be written as an additional coordinate variable at each time
step. Default is .FALSE., in which case the vertical positions are
referred to the mean water level. This option is only available
for time series output.

time format Format of the time coordinate.

0: date/time in string format (default value)

1: seconds

2: minutes

3: hours

4: days

440 CHAPTER 9. MODEL INPUT AND OUTPUT

5: months

6: years

7: date in years

Cases 1-6 are numerical formats. Cases 0 and 7 are absolute
times, while the others are times relative to the reference date/time
refdate.

refdate Reference date/time for calculating relative times. If not given,
refdate equals the first output date/time, rounded to the nearest
minute, hour, ... depending on the value of time format.

tlims Start/end/step time indices for data output. This means that
output will be written at intervals of delt2d*tlims(3) seconds.

nodim Dimension of the output grid (0/2/3). For example, the dimen-
sion must be set to 3 to enable 3-D output.

nostats Number of data stations in case of non-gridded (station) data.

xlims Start/end/step X-index in case of gridded data. This defines
the output sub-grid in the X-direction. (Option not available
for 0-D or station output).

ylims Start/end/step Y-index in case of gridded data. This defines
the output sub-grid in the Y-direction. (Option not available
for station or 0-D output).

zlims Start/end/step Z-index in case of gridded data. This defines the
output sub-grid in the Z-direction and applies for gridded and
non-gridded output. (Option only available for 3-D output).

Attributes of variables and coordinate arrays of the output grid are stored
in a derived type variable of TYPE(VariableAtts) (see Section 9.5.1). The
program makes distinction between two types of variables:

• Standard variables whose attributes are known to the program. In that
case the variable’s key id is supplied by the user and only a limited num-
ber of definitions need to be made. A number of operators (minimum,
maximum or mean value, value at a given vertical level or depth) can
be applied to the output data. The output values are automatically
generated by the program.

• User-defined variables in which case all attributes and output values
are to be defined by the user.

The procedures for defining time series output can be summarised as follows.

9.6. USER OUTPUT FILES 441

1. Define the three general parameters

nosetstsr number of sets

novarstsr total number of output variables

nostatstsr total number of output stations

2. Define the attributes of all variables used for time series output. At-
tributes can be automatically generated if the ivarid attribute is defined
by the user.

3. For each set

• Select which files are to be written (0-D, 2-D, 3-D) using the define
attribute.

• Define the file attributes form, filename, info, header type. Defaults
are available.

• Select the variables for each output file.

• Define the attributes of the output grid. Defaults are available.

The procedures for time averaged output are the same, except that an
averaging period needs to be defined instead of an output time interval.

For harmonic output additional parameters need to be defined. Assume
then that N frequencies are selected within one set. The following output
files may be defined within that set:

• 0-D: 1 residual, N amplitude and N phase files

• 2-D: 1 residual, N amplitude, N phase and N elliptic (tidal ellipse
parameters) files

• 3-D: 1 residual, N amplitude, N phase and N elliptic files

giving a maximum of 3+8N files per set.
In addition to the the procedures for time series output, harmonic output

requires to:

1. Define the total number of frequencies nofreqsanal.

2. Define all harmonic frequencies.

3. For each set

• select which of the 3+8N files are written

442 CHAPTER 9. MODEL INPUT AND OUTPUT

• select output frequencies

• select elliptic parameters (optional)

• select the period for analysis.

9.6.2 Structure of user output files

The general structure is similar to the one used for forcing files, except that
the file additionally contains the coordinates of the output grid.

[Names and values of dimensions]

Global attributes

...

Attributes of spatial coordinate 1

...

Attributes of spatial coordinate 2

...

Attributes of time coordinate

...

Attributes of variable 1

...

Attributes of variable 2

...

Attributes of variable n

...

Values of spatial coordinate 1

...

Values of spatial coordinate 2

...

First output time

[Surface elevation coordinate]

Values of variables 1

...

Values of variables n

Second output time

...

Example 9.13: General layout of a user output file.

In principle, the number of coordinate variables should be equal to or
lower than four (three spatial and one time variable). However, the model
uses a σ-grid which is fixed in time in the transformed coordinate system,

9.6. USER OUTPUT FILES 443

but not in physical space due to the up and down movements of the water
column. In most graphical applications these changes are negligible and the
total water depth is approximated by its mean value. However, time-varying
grids can be taken into account in the current version of COHERENS. The
output grid can then be defined through the following six coordinates (where
the spatial dimension is given in parentheses):

xout X-coordinate in m or fractional degrees longitude (2-D)

yout Y-coordinate in m or fractional degrees latitude (2-D)

zout Z-coordinate in m using mean water depths, i.e. between −h and 0
(3-D)

depout mean water depth in m (2-D)

zetout surface elevation in m (2-D)

time output time (0-D). Unit is specified by the time format attribute.

It is clear that

• In the case of a 0-D output only the time coordinate is included.

• In the case of a 2-D output only xout, yout, depout and time are in-
cluded.

• Elevation data are only included if the user selects a time varying 3-D
output grid using the time grid attribute.

The first four arrays have no associated time dimension. The last two are
stored within the file in chronological order at regular time intervals. In the
ASCII and unformatted binary format, storage is sequential. In the netCDF
format, data are stored with increasing record numbers at subsequent times.

9.6.3 Format of files with user-defined output

9.6.3.1 ASCII files

The ASCII format is illustrated with examples taken from the plume test
case. The first shows the contents of the output file plumeA 2.out3A. The
line numbers have been added in the header section for illustrative purposes
only and do not appear in the actual file.

1 : 2

2 :V2.0

3 :2010/06/23;12:19:42

444 CHAPTER 9. MODEL INPUT AND OUTPUT

4 :Time series data: plume1A

5 : 3

6 :F

7 : T F F

8 : 0 1 1

9 : 1 40 20 0 0 25

10: 10800.00

11:2003/01/03;00:00:00,000

12:2003/01/06;00:00:00,000

13:2003/01/03;00:00:00,000

14: 0

15: 5

16: 5

17: 4

18: 957 5 2 1 40

19:xout

20:X-coordinate

21: m

22: 962 5 2 1 40

23:yout

24:Y-coordinate

25: m

26: 968 5 3 1 40 20

27:zout

28:Z-coordinate

29: m

30: 951 5 2 1 40

31:depout

32:Mean water depth

33: m

34: 952 5 2 23 25

35:time

36:Time

37: date/time

38: 162 5 4 1 40 20 25

39:uvel

40:X-component of current

41:m/s

42:Current

43: 171 5 4 1 40 20 25

44:vvel

9.6. USER OUTPUT FILES 445

45:Y-component of current

46:m/s

47:Current

48: 175 5 4 1 40 20 25

49:wphys

50:Physical vertical velocity

51:m/s

52:Physical current

53: 204 5 4 1 40 20 25

54:sal

55:Salinity

56:PSU

57:

[xout]

29500.00 29500.00 ...

[yout]

500.0000 1500.000 ...

[zout]

-19.50000 -19.50000 ...

[depout]

20.00000 20.00000 ...

2003/01/03;00:00:00,000

[uvel]

-0.2228398 -0.2281678 ...

[vvel]

-0.8393249E-02 -0.1428325E-01 ...

[wphys]

0.000000 0.000000 ...

[sal]

33.00000 33.00000 ...

2003/01/03;03:00:00,000

...

Example 9.14: Contents of the output data file plumeA 2.tsout3A from the
plume test case.

• Line 1: the header type attribute. If set to 0, no further header infor-
mation will be given (except this line). Otherwise, its value is 2.

• Line 2: the coherens version attribute with the currently used COHE-
RENS version.

446 CHAPTER 9. MODEL INPUT AND OUTPUT

• Line 3: the creation date giving the exact date and time when the file
was created.

• Line 4: the filedesc attribute with a description of the simulation.

• Line 5: the nodim attribute giving the spatial dimension of the output
grid.

• Line 6: the grid file attribute. If .TRUE. (.FALSE.), grid data and
metadata are (are not) written to a separate data file.

• Line 7: the gridded, land mask and time grid attributes.

• Line 8: values of the switches of iopt grid sph, iopt grid htype and
iopt grid vtype which define the type of grid (see Section 14.4.1).

• Line 9: the attributes ncout, nrout, nzout, which define the size of the
output grid (gridded case), nowetout, giving the number of sea points in
the output grid (if the land mask attribute is .TRUE., zero otherwise),
nostats (the number of stations in the non-gridded case) and nstepout
(number of time records).

• Line 10: the output time step in seconds (deltout attribute).

• Line 11: date/time of first output (startdate attribute).

• Line 12: date/time of last output (enddate attribute).

• Line 13: reference date/time (refdate attribute). If the time coordinate
has a numerical format, the time is given as the time elapsed from this
date.

• Line 14: the time format attribute.

• Line 15: the nocoords attribute giving the number of grid coordinates.

• Line 16: the timeid attribute giving the variable id of the time coordi-
nate. This attribute is only used for reading the time coordinate in a
netCDF file.

• In case of a time varying grid (only), the zetaid attribute giving the vari-
able id of the zetout coordinate, used for reading the surface elevation
coordinate in a netCDF file.

• Line 17: the novars attribute giving the number of data variables.

9.6. USER OUTPUT FILES 447

• In case of station data, the labels and names of the stations are written
on subsequent lines with one line per station.

• Lines: 18-37: attributes of each coordinate variable using four lines per
variable.

– line 1: the attributes ivarid, data type, nrank, shape, represented
by 3+nrank integer parameters

– line 2: the f90 name attribute

– line 3: the long name attribute

– line 4: the units attribute

• Lines 38–57: attributes of each data variable using five lines per variable

– line 1: the attributes ivarid, data type, nrank, shape, represented
by 3+nrank integer parameters

– line 2: the f90 name attribute

– line 3: the long name attribute

– line 4: the units attribute

– line 5: the vector name attribute

• The total number of header lines in the current example is then given
by 17+4*nocoords+5*novars.

– If nostats>0, nostats lines have to be added.

– If time grid is .TRUE., there is 1 additional line for the zetaid at-
tribute. In that case nocoords is also increased by 1.

– If grid file is .TRUE., lines 7–16 and 18–37 are moved to the header
of the grid file. The total number of header lines is then decreased
by 10+4*nocoords.

• The remaining lines in the example form the data section, which is
composed of two parts:

– The first part lists (if the time grid attribute is .TRUE.) the values
of the time-independent coordinate arrays, preceded by an empty
line and written in the same order as defined in the header.

– The second lists (if the time grid attribute is .TRUE.) the values of
the time-dependent coordinate arrays (and data variables in the
following order:

448 CHAPTER 9. MODEL INPUT AND OUTPUT

∗ time coordinate

∗ zetout variable (if time grid is .TRUE. and preceded by an
empty line)

∗ values of each data variable in the same order as defined in
the header. Each variable list is preceded by an empty line.

∗ For clarity, the name of the variable is substituted in [] within
the example.

– The same procedure is followed for the next time records.

The contents of an ASCII forcing file are to be read sequentially, i.e. line
by line.

• The parameters listed on each line all have the same data type (except
for the station parameters) which makes it easy to read them using
the character (‘A’) format (strings) or in free (∗) format (integer, real,
logical data).

• The data values (except the date/time string if the time coordinate is
given in a non-numeric format) are all of type REAL, read in FORTRAN
array order. Format specifications are the same as for forcing files (see
Section 9.5.3.1), i.e. ‘(A)’ for the date/time string and RealFormat for
the other variables.

If grid file is set to .TRUE., all coordinate information and data are moved
to a separate grid file (i.e. lines 7–16, 18–37 and the values of the coordinate
arrays).

The next example is a 0-D output file from the test case fredyA.

2

V2.0

2010/06/24;14:07:32

Time series data: fredyA

0

F

T F F

0 1 1

0 0 0 0 0 865

600.0000

2003/01/01;00:00:00,000

2003/01/07;00:00:00,000

2003/01/01;00:00:00,000

0

9.6. USER OUTPUT FILES 449

1

1

8

952 5 2 23 865

time

Time

date/time

0 5 1 60

ekin

Kinetic energy

GJ

0 5 1 60

epot

Available potential energy

GJ

0 5 1 60

theta

Energy ratio

0 5 1 60

enstr

Enstrophy

m^3/s^2

0 5 1 60

a1pt

A1%

10^8 m^2

0 5 1 60

salmin

Minimum salinity

PSU

0 5 1 60

salmax

Maximum salinity

PSU

450 CHAPTER 9. MODEL INPUT AND OUTPUT

0 5 1 60

smean

Mean salinity deviation

PSU

2003/01/01;00:00:00,000

0.000000 9.042427 0.000000 0.000000

0.2500000 33.75000 34.85000 -0.3296069E-02

2003/01/01;00:10:00,000

0.2259467E-01 8.989937 0.2513329E-02 0.1228950E-04

0.3700000 33.75000 34.85001 -0.3295073E-02

...

2003/01/07;00:00:00,000

0.6530415 7.097948 0.9200427E-01 0.2413782

3.370000 34.27942 34.85036 -0.3307598E-02
Example 9.15: Contents of the output data file fredyA 2.tsout0A from the

fredyA test case.

• Since the data have no spatial dimension in a 0-D file, the time variable
is the only coordinate.

• Contrary to the general case, 0-D data are not stored indivually but as
a vector of size novars. They are read using

REAL, DIMENSION(novars) :: out0ddat

READ (iunit,’(A)’) ciodatetime

READ (iunit,RealFormat) out0ddat

ekin = out0ddat(1); ...; smean = out0ddat(novars)

• The ivarid attribute is zero for all data variables. This means that the
f90 name, long name and units attributes are non-standard and defined
by the user.

9.6.3.2 unformatted binary files

When the unformatted binary format is selected for a forcing file, the same
metadata and data are written as in the case of an ASCII format. The
differences are the same as described in Section 9.5.3.2 for forcing files.

9.6. USER OUTPUT FILES 451

9.6.3.3 netcdf files

The description of the netCDF format is similar to the one given in Sec-
tion 9.5.3.3 and will not repated here. Two examples are given below. The
first one lists the contents of the file plumeA 1.ellip3N, with harmonic output
from the test case plumeA.

netcdf plumeA 1

dimensions:

xdim = 120 ;

ydim = 40 ;

zdim = 20 ;

tlendim = 23 ;

tdim = UNLIMITED ; // (6 currently)

variables:

float xout(ydim, xdim) ;

xout:ivarid = 957 ;

xout:long name = "X-coordinate" ;

xout:units = "m" ;

float yout(ydim, xdim) ;

yout:ivarid = 962 ;

yout:long name = "Y-coordinate" ;

yout:units = "m" ;

float zout(zdim, ydim, xdim) ;

zout:ivarid = 968 ;

zout:long name = "Z-coordinate" ;

zout:units = "m" ;

float depout(ydim, xdim) ;

depout:ivarid = 951 ;

depout:long name = "Mean water depth" ;

depout:units = "m" ;

char time(tdim, tlendim) ;

time:ivarid = 952 ;

time:long name = "Time" ;

time:units = "date/time" ;

float ellmin3d(tdim, zdim, ydim, xdim) ;

ellmin3d:ivarid = 0 ;

ellmin3d:long name = "M2-Ellipticity" ;

ellmin3d:units = "-" ;

ellmin3d:vector name = "_" ;

// global attributes:

452 CHAPTER 9. MODEL INPUT AND OUTPUT

:header type = 2 ;

:coherens version = "V2.0" ;

:creation date = "2010/06/23;12:19:42" ;

:filedesc = "Elliptic parameters" ;

:cdfversion = "3̈.6.2¨ of" ;

:iopt CDF fill = 0 ;

:grid dimension = 3 ;

:grid file = 0 ;

:gridded = 1 ;

:land mask = 0 ;

:time grid = 0 ;

:grid type = 0, 1, 1 ;

:dimensions = 120, 40, 20, 0, 0, 6 ;

:time step = 43200.f ;

:startdate = "2003/01/03;06:00:00,000" ;

:enddate = "2003/01/05;18:00:00,000" ;

:refdate = "2003/01/03;06:00:00,000" ;

:time format = 0 ;

:nocoords = 5 ;

:timeid = 5 ;

:novars = 1 ;

:timerec = 6 ;

data:

xout =

500, 1500, ...

yout =

500, 500, ...

zout =

-19.5, -19.5, ...

depout =

20, 20, ...

time =

"2003/01/03;06:00:00,000",

"2003/01/03;18:00:00,000",

"2003/01/04;06:00:00,000",

"2003/01/04;18:00:00,000",

9.6. USER OUTPUT FILES 453

"2003/01/05;06:00:00,000",

"2003/01/05;18:00:00,000" ;

ellmin3d =

0.03929285, 0.03556633, ...

-0.1459797, -0.1480648, -0.1499712, -0.1511258, -0.1511276, -0.1443668 ;

Example 9.16: Contents of the output data file plumeA 1.ellip3N from the
plumeA test case.

The attributes are similar to the ones listed in the ASCII format. Some are
defined with a different name (e.g. the dimensions attribute which combines
the values of the previous parameters ncout, nrout, nzout, nowetout, nostats,
nstepout into one vector). Other attributes are defined implicitly such as
f90 name, nrank and shape. The timerec giving the current number of (time)
records and cdfversion with the current version of netCDF, do not exist in the
ASCII and unformatted binary formats.

The second example is the same as Example 9.17 now given in CDL
format.

netcdf fredyA 2

dimensions:

tlendim = 23 ;

tdim = UNLIMITED ; // (865 currently)

variables:

char time(tdim, tlendim) ;

time:ivarid = 952 ;

time:long name = "Time" ;

time:units = "date/time" ;

float ekin(tdim) ;

ekin:ivarid = 0 ;

ekin:long name = "Kinetic energy" ;

ekin:units = "GJ" ;

ekin:vector name = "_" ;

float epot(tdim) ;

epot:ivarid = 0 ;

epot:long name = "Available potential energy" ;

epot:units = "GJ" ;

epot:vector name = "_" ;

float theta(tdim) ;

theta:ivarid = 0 ;

454 CHAPTER 9. MODEL INPUT AND OUTPUT

theta:long name = "Energy ratio" ;

theta:units = "_" ;

theta:vector name = "_" ;

float enstr(tdim) ;

enstr:ivarid = 0 ;

enstr:long name = "Enstrophy" ;

enstr:units = "m^3/s^2" ;

enstr:vector name = "_" ;

float a1pt(tdim) ;

a1pt:ivarid = 0 ;

a1pt:long name = "A1%" ;

a1pt:units = "10^8_m^2" ;

a1pt:vector name = "_" ;

float salmin(tdim) ;

salmin:ivarid = 0 ;

salmin:long name = "Minimum salinity" ;

salmin:units = "PSU" ;

salmin:vector name = "_" ;

float salmax(tdim) ;

salmax:ivarid = 0 ;

salmax:long name = "Maximum salinity" ;

salmax:units = "PSU" ;

salmax:vector name = "_" ;

float smean(tdim) ;

smean:ivarid = 0 ;

smean:long name = "Mean salinity deviation" ;

smean:units = "PSU" ;

smean:vector name = "_" ;

// global attributes:

:header type = 2 ;

:coherens version = "V2.0" ;

:creation date = "2010/06/24;09:55:22" ;

:filedesc = "Time series data: fredyA" ;

:cdfversion = "3̈.6.2¨ of" ;

:iopt CDF fill = 0 ;

:grid dimension = 0 ;

:grid file = 0 ;

:gridded = 1 ;

:land mask = 0 ;

:time grid = 0 ;

9.6. USER OUTPUT FILES 455

:grid type = 0, 1, 1 ;

:dimensions = 0, 0, 0, 0, 0, 865 ;

:time step = 600.f ;

:startdate = "2003/01/01;00:00:00,000" ;

:enddate = "2003/01/07;00:00:00,000" ;

:refdate = "2003/01/01;00:00:00,000" ;

:time format = 0 ;

:nocoords = 1 ;

:timeid = 1 ;

:novars = 8 ;

:timerec = 865 ;

data:

time =

"2003/01/01;00:00:00,000",

...

"2003/01/07;00:00:00,000" ;

ekin = 0, 0.02259467, 0.08382063, ...

epot = 9.042427, 8.989937, ...

theta = 0, 0.002513329, ...

enstr = 0, 1.22895e-05, ...

a1pt = 0.25, 0.37, ...

salmin = 33.75, 33.75, ...

salmax = 34.85, 34.85001, ...

smean = -0.003296069, -0.003295073, ...

Example 9.17: Contents of fredyA 2.tsout0N output data file from the
fredyA test case in CDL format.

Contrary to the ASCII case, a separate netCDF call has to be made to read
each of the 0-D output data, i.e. the data are not stored in vector form but
as separate records in the netCDF file.

456 CHAPTER 9. MODEL INPUT AND OUTPUT

	III Description of the model code
	Model input and output
	Classification of model files
	Default file names
	title
	pid
	form
	filedesc
	filenum
	freqnum
	dim

	Formats of monitoring files
	Log files
	Error files
	Warning file
	Timer report file

	Central input file
	Syntax of a CIF
	CIF blocks
	Order of definitions

	Forcing files
	General aspects
	Data contents of forcing files
	Standard format of forcing files
	ASCII files
	unformatted binary files
	netCDF files

	User output files
	General aspects
	Structure of user output files
	Format of files with user-defined output
	ASCII files
	unformatted binary files
	netcdf files

