
Chapter 8

Program conventions and
techniques

The following items are discussed in this chapter.

• The COHERENS V2.0 code is written in standard FORTRAN 90 format.
To improve portability and transparancy a number of programming
conventions, further denoted as the “COHERENS conventions”, have
been adopted. They are described in Section 8.1. These rules are of
importance for developers who are working on new developments and
have the intention to make the new code available to the COHERENS
community.

• Implementation of specific FORTRAN 90 features such as allocatable
arrays, derived types, modules and generic routines, are discussed in
Sections 8.1.3–8.1.6.

• The format for internal documentation is explained in Section 8.1.7.

• Basic aspects of the model code such as the principle of key ids, time
formats, data flags and the units of program variables are discussed in
Section 8.2.

8.1 Implementation of FORTRAN 90

A main difference between versions 1 and 2 of COHERENS is that the code
in the old version is written in FORTRAN 77 and the latter in FORTRAN
90. This section discusses the programming conventions based upon specific
features of FORTRAN 90. Users, who have no experience with FORTRAN 90
but are familiar with the FORTRAN 77 standard may consult the many books,

359

360 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

course notes and other publications available from commercial publishers or
via the internet.

8.1.1 COHERENS programming conventions

1. All source code is written in “free format”. This implies the following:

• The column position is irrelevant. The adopted rule is that all pro-
gram lines start at column 1, with exceptions of statements within
control constructs such as IF blocks, DO loops and SELECT CASE
constructs, which are intended by one TAB position to the right.
Lines within a nested construct are intended with respect to the
previous one. For clarity no indentation is applied if the DO/ENDDO
statement of a nested loop is located just below/above the DO/ENDDO
of the parent loop. This is illustrated with the following example.

idesc 360: DO idesc=1,MaxIOTypes

ifil 360: DO ifil=1,MaxIOFiles

SELECT CASE (idesc)

CASE (io mppmod,io modgrd,io metgrd,io sstgrd,io biogrd,&

& io nstgrd,io biospc,io rlxobc,io nstspc)

modfiles(idesc,ifil,:)%nocoords = 0

CASE (io 1uvsur,io 2uvobc,io 3uvobc,io salobc,io tmpobc,&

& io bioobc)

IF (ifil.EQ.1) THEN

modfiles(idesc,ifil,:)%nocoords = 0

ELSE

modfiles(idesc,ifil,:)%nocoords = 1

ENDIF

CASE (io inicon,io 2uvnst,io 3uvnst,io salnst,io tmpnst,&

& io bionst,io metsur,io sstsur,io biosur)

modfiles(idesc,ifil,:)%nocoords = 1

END SELECT

ENDDO ifil 360

ENDDO idesc 360

Example 8.1: indentation of control structures and continuation
lines.

• Although the free format allows line lengths upto 132 characters,
a length of 80 characters is taken for clarity since this is the maxi-
mum length on standard X-windows on UNIX/LINUX machines.

8.1. IMPLEMENTATION OF FORTRAN 90 361

Statements longer than this limit are continued on the next line
by appending a ‘&’ character at the end of the line and at the
start of the (possibly) intended line, as shown in Example 8.1.

• Comments lines start with a ‘!’ in the first column. Although
allowed by the FORTRAN 90 standard, the common practice is,
for reason of clarity, not to use comments after the first column
(i.e. in the middle of a line).

• Short statements may be written on one line by inserting a ‘;’
before each next statement.

• Statements labels always start at the first column.

2. Names of variables, named constants, program units (subroutines, func-
tions, modules) and dummy arguments can contain letters, digits and
underscores. The first character must be a letter. The maximum length
of a name is given by the program parameter lenname = 31, which is
also the FORTRAN 90 standard. The underscore character ‘ ’ is used in
the code for names composed of different words, e.g. density equation,
land mask, or for key ids (see Section 8.2.1) below.

3. Although names in FORTRAN 90 are case insensitive, the convention is
adopted to write all FORTRAN 90 specific names in uppercase, and all
names, defined in the code in lowercase letters. A mixed case is used
for some systems parameters (see e.g. syspars.f90).

4. The program uses explicit typing. This means that the type of each
variable, parameter or function result needs to declared explicitly in
the declaration part of a program unit. This part must be preceded by
the line:

IMPLICIT NONE

5. The indices of an array defined on the model grid, as defined in Sec-
tion 10.1.1, are denoted by i,j,k for respectively the X-, Y- and Z-
direction.

6. In FORTRAN 77 the values of a model grid array can only be accessed
element-wise within an assignment statement. The FORTRAN 90 stan-
dard allows to use assignments on whole arrays or array sections. The
rule is that the expression on the right is either a scalar or an array
with the same shape as the one on the left. In the first case the value
of the scalar is assigned to all elements in the array on the left. In

362 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

the second one, the values of the array expression on the right are as-
signed element-wise to the corrsponding elements of the array variable
on the left. The convention, adopted in COHERENS, is to use array
assignments where possible, e.g.

REAL, DIMENSION(ncloc,nrloc,nz) :: array3dc

...

array3dc = 0.0

This procedure is primarily used for the initialisation of variables. How-
ever, in most parts of the program distinction has to be made between
grid points located on land and sea points. The method consists in
maintaining a vertical (“k”) loop, whereas the (“i,j”) loops in the ho-
rizontal direction are replaced by array assignments within a WHERE
block, as in the following example:

k 434: DO k=1,nz

WHERE (maskatc int)

psic A(1:ncloc,1:nrloc,k) = tridcfc(:,:,k,4)

END WHERE

ENDDO k 434

Example 8.2: array assignment and land masks.

The array maskatc int is .TRUE. or .FALSE. for grid points located at
sea or on land and has the same shape as the array assignment(s) within
the WHERE block. In this way calculations are restricted to sea points
only.

7. Scalar and array variables must be initialised. More precisely, each
scalar or array element must have a value assigned to it, before it can
appear within an expression on the right of an assignment statement.
The standard initialisation value for variables which have no useful
default value is 0.0 for REAL, 0 for INTEGER, .FALSE. for LOGICAL
and ” (empty string) for CHARACTER variables. In this way a model
grid array is always defined at all grid points. Values at sea points
are usually re-defined within the program whereas values in land areas
remain equal to the initial (zero or .FALSE.) value.

8. As explained in Section 12.1, there are four types of program units:
main program, external routines, module routines and modules where
the main variables used in the program are declared. The following
rules are applied in the code:

8.1. IMPLEMENTATION OF FORTRAN 90 363

• Dummy arguments of an external or module routine need to be
declared with the INTENT attribute (although this is not required
by the FORTRAN 90 standard). The INTENT attribute can have
the values IN, OUT and INOUT.

• Optional arguments are only allowed in module routine declara-
tions and not in external routines. This avoids the programming
of explicit interfaces. Optional arguments are positioned after all
non-optional arguments.

• Argument association in a routine call is positional for non-optional
arguments, whereas keyword association is used for (eventually)
optional arguments.

CALL cf90 inquire variable(iunit,ivar,name=f90 name(ivar),&

& dimids=iddims(1:ndims))

where name and dimids are the names of dummy optional argu-
ments.

• Module routines are declared in a sub-program with a USE state-
ment of the form given in Section 8.1.5.

• The last lines of a SUBROUTINE or FUNCTION consist of a RE-
TURN statement followed either by an empty line, one or more
specification or errror code lines, followed by a END proc name
statement where proc name is the name of the routine.

• Since all variables (scalars and arrays) are to be initialised, they
must be defined with a value before they can be used as an actual
argument with the INTENT(IN) or INTENT(INOUT) attribute.
This is of importance, since, for example, passing an undefined
value as argument in a read or MPI call may produce unexpected
side effects.

9. The following FORTRAN 77 features are not allowed or not recom-
mended in the COHERENS programming convention:

• COMMON and INCLUDE1 are excluded

• GOTO statements are allowed only in exceptional cases (e.g. for
error coding).

1INCLUDE mpif.h is the only allowed exception.

364 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

8.1.2 Data types

Table 8.1 lists the data types implemented in COHERENS V2.0. The COM-
PLEX, INTEGER(KIND=8) and (derived) TYPE do not exist or are non-
standard in FORTRAN 77. The following comments are to be given:

• For the LOGICAL, INTEGER, REAL, COMPLEX types without a KIND
specifier, a default KIND value is taken, as given in the last column.
These defaults are standard on most (commercial and free software)
compilers. If this is not the case, they can usually be enforced through
compiler options.

• The INTEGER (KIND=8) type is not supported by all compilers (such
as gfortran). In that case, the KIND value is replaced 4. This poses
no problem for most program applications, since the type is only used
to designate the number of seconds since a given date (see Section 8.2.2
for a further discussion).

• Each type has a corresponding id, represented by an INTEGER para-
meter, given in the second column of Table 8.1. The id is e.g. used
in the program to identify the type of variable in a routine call. For
example, the last argument in the routine call

CALL error alloc(’depmeanatc’,2,(/ncloc+2,nrloc+2/),real type)

informs the routine error alloc that the variable ’depmeanatc’ is of type
REAL.

• The KIND value is represented by a named constant, given in column 3,
whose value is given in the fourth column of Table 8.1.

• DERIVED TYPES are a new feature of FORTRAN 90 further discussed
in Section 8.1.4.

• COMPLEX variables are currently only used for fast Fourier analysis
(file fft library.f90).

Type declaration statements have the following general FORTRAN 90
syntax:

type [, att,...] :: var name

where

type : the data type of the variable

8.1. IMPLEMENTATION OF FORTRAN 90 365

Table 8.1: Model data types.

FORTRAN type COHERENS type KIND parameter (assumed) size in bytes

CHARACTER char type kndchar 1
LOGICAL log type kndlog 4
INTEGER int type kndint 4
INTEGER (KIND=8) longint type kndilong 4 or 8 (non-standard)
REAL real type kndreal 4
REAL (KIND=8) long type kndlong 8
COMPLEX complx type kndcmplx 8
DERIVED – –

att : one or more attribute(s) of the variable, which can take the following
forms

SAVE: the value of the variable is saved after the routines is exited

INTENT: used to declare dummy arguments only. Takes one of the
forms: INTENT(IN) if the actual argument is defined in the calling
routine and not re-defined in the called routine, INTENT(OUT) of
the variable is assumed to be undefined in the calling routine and
becomes defined within the called routine, INTENT(INOUT) if the
actual argument is defined in the calling routine and can be re-
defined in the called routine. Note that the INTENT attribute is
always given in declaration statements of dummy arguments (al-
though this is not required by the FORTRAN 90 standard).

DIMENSION: used to define the shape of an array variable. The array
shape is added in parentheses.

ALLOCATABLE: to declare an allocatable array (see Section 8.1.3)

PARAMETER: a named constant whose value cannot be changed by the
program

var name name of the variable

It is remarked that

• CHARACTER variables have an additional attribute LEN=len where len
is the length of the character string.

• Variables, sharing the same attributes are (preferentially) declared on
the same line.

366 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

• Declaration and definition of DERIVED TYPE variables is discussed in
Section 8.1.4. To improve transparancy all DERIVED TYPE defnitions
are made in the common file datatypes.f90.

For example

CHARACTER (LEN=12) :: ctype

CHARACTER (LEN=lenname), DIMENSION(MaxProgLevels) :: procname

INTEGER, PARAMETER :: lentime = 21

INTEGER, SAVE :: iunit

REAL :: xtemp, ytemp

REAL, DIMENSION(ncloc,nrloc) :: array2dc1

REAL, SAVE, ALLOCATABLE, DIMENSION(:,:) :: array2dc2, array2dc3

Example 8.3: examples of type declarations.

8.1.3 Allocatable arrays

Allocatable arrays are arrays declared with a rank but without shape. After
been allocated with the ALLOCATE statement, allocated arrays can be deal-
located with a DEALLOCATE statement at any time within the program.
Advantages are:

• An efficient programming of ALLOCATE and DEALLOCATE statements
offers the possibility for significant memory savings and a more effi-
cient use of internal memory. For example, the COHERENS V1 pro-
gram, written in FORTRAN 77, required that all memory allocations
are known at compilation, implying the consumption of unused mem-
ory.

• Array bounds can (re)assigned with non-constant values.

• Allocatable arrays can be SAVEd, even before the “ALLOCATABLE”
statement is executed (see Example 8.3)

• Contrary to automatic arrays which are usually stored on the machine’s
stack memory, allocated arrays use internal memory. This offers a clear
advantage on machines with a limited stack size.

• In parallel mode, different bounds can be defined for the same array on
different process domains.

Disadvantages are:

8.1. IMPLEMENTATION OF FORTRAN 90 367

• Arrays, that have not been allocated yet, cannot be passed as argu-
ments to a routine call.

• Errors are difficult to debug. For example, it may occur that values are
assigned to an array which is allocated with a zero size. This causes a
memory fault which is often difficult to detect, since it usually causes
a crash at a different location within the program.

• Although this has not been observed from the performance tests per-
formed with COHERENS V2.0, an intensive use of allocation/deallocation
may decrease the performance of the program.

A source code example of array allocation is given below.

REAL, ALLOCATABLE, DIMENSION(:,:) :: array2d

...

l1 = ...; l2 = ...; u2 = ...

ALLOCATE (array2d(l1:l2,u2),STAT=ierr)

CALL error alloc(’array2d’,2,(/l2-l1+1,u2/),real type)

...

IF (ALLOCATED(array2d)) DEALLOCATE (array2d)

Example 8.4: example of an allocate statement in COHERENS.

The error alloc routine is called by the program after each ALLOCATE state-
ment to check whether an allocation error occurred.

Array allocation is applied in the model as follows.

• “Global arrays”, i.e. arrays which are accessible to all program units
such as temperature, currents, . . . , are (almost) always declared with
the ALLOCATE and SAVE attribute2. Note that in case of a parallel
mode, the shapes of model grid arrays depend on the size of the sub-
domain.

• Local arrays are only accessible to a program unit (SUBROUTINE or
FUNCTION). They are declared either as allocatable or as automatic
arrays depending on whether the CPP option -DMPI is set (see Sec-
tion 3.2). Consider the following example

2For technical reasons a few arrays are declared with constant array dimensions.

368 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

SUBROUTINE

!---declare

#ifdef ALLOC

REAL, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: source

#else

REAL, DIMENSION(ncloc,nrloc,nz) :: source

#endif /*ALLOC*/

...

!---allocate

#ifdef ALLOC

ALLOCATE (source(ncloc,nrloc,nz),STAT=errstat)

CALL error alloc(’source’,3,(/ncloc,nrloc,nz/),real_type)

#endif /*ALLOC*/

.....

!---deallocate

#ifdef ALLOC

DEALLOCATE (source)

#endif /*ALLOC*/

END SUBROUTINE

Example 8.5: allocation/deallocation of local arrays.

If the ALLOC option is set, the local array source is declared as ALLO-
CATABLE, allocated at the beginning of the routine and deallocated
before exiting the routine. Otherwise, it is declared as an automatic
array. The first case has to be taken if there is no sufficient mem-
ory available, the second if the allocation/deallocation procedures have
a negative impact on CPU time. The choice is obviously machine-
dependent.

8.1.4 Derived types

DERIVED TYPE variables can be considered as aggregated structures com-
posed of “atomic” FORTRAN data types (INTEGER, REAL, LOGICAL, CHAR-
ACTER). The aim, in COHERENS, is to store all possible information about
a specific item (e.g. a file or variable) in a structured format.

Before a DERIVED TYPE can be declared, its TYPE needs to be defined.
The example below, taken from the source code, shows the definition of a
derived type variable for storing the attributes of a program variable.

TYPE :: VariableAtts

CHARACTER (LEN=lenname) :: f90 name

8.1. IMPLEMENTATION OF FORTRAN 90 369

CHARACTER (LEN=lendesc) :: long name, vector name

CHARACTER (LEN=lenunit) :: units

CHARACTER (LEN=lennode) :: node

INTEGER :: data type, ivarid, nrank

INTEGER, DIMENSION(4) :: shape

END TYPE VariableAtts

Example 8.6: TYPE definition for storing variable attributes.

A variable of this type can be defined as

TYPE (VariableAtts) :: varatts

The components of varatt are accessed using the FORTRAN 90 syntax

• varatts%f90 name: a character string with the FORTRAN name of the
variable

• varatts%long name: a string of length lendesc describing the variable

• varatts%data type: the data type of the variable as given in the second
column of Table 8.1

• varatts%nrank: rank of the variable (0 for a scalar, 1 for a vector, . . .)

• . . .

The DERIVED TYPE FileParams is used to store all atributes of a file

TYPE :: FileParams

LOGICAL :: defined, info, opened, time regular

CHARACTER (LEN=1) :: form, status

CHARACTER (LEN=leniofile) :: filename, pathname

CHARACTER (LEN=lendesc) :: filedesc

INTEGER :: endfile, header type, iostat, iunit, lenrec, maxrecs, &

& nocoords, nodim, novars, timeid, timerec, tskips, &

& varid, zetaid

INTEGER, DIMENSION(3) :: tlims

END TYPE FileParams

Example 8.7: TYPE definition for storing file attributes.

370 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

A useful property of DERIVED TYPEs is that they can de declared with
the same attributes as any other data type. This means that they can be
declared as scalars, arrays with a given shape, allocatable arrays with a
given rank and with the SAVE or INTENT attribute. The following example
illustrates how the attributes of the variables within a certain data file are
defined first and then written to the file.

!---declare

INTEGER :: numvars

TYPE (FileParams), DIMENSION(MaxIOTypes,MaxIOFiles,2) :: modfiles

TYPE (FileParams) :: filepars

TYPE (VariableAtts), ALLOCATABLE, DIMENSION(:) :: varatts

!---define file attributes

CALL set modfiles atts(io modgrd,1,2)

filepars = modfiles(io modgrd,1,2)

numvars = filepars%novars

!---open file

CALL open filepars(filepars)

!---define variable attributes

ALLOCATE (varatts(numvars),STAT=errstat)

CALL error alloc struc(’varatts’,1,(/numvars/),’VariableAtts’)

CALL set modvars atts(io modgrd,1,2,varatts,numvars)

!---write variable attributes

CALL write atts mod(filepars,varatts,numvars)

...

!---deallocate

DEALLOCATE (varatts)

Example 8.8: defining and writing variable attributes to a data file.

File formats will be discussed in Chapter 9.

The next example describes how the relative coordinates of a 2-D external
grid are obtained and stored. These type of coordinates are used to perform
interpolation of model data to each point of the data grid and are further
discussed in Sections 10.3 and 10.4.2. The following TYPEs are defined

!---attributes of surface grids

TYPE :: GridParams

8.1. IMPLEMENTATION OF FORTRAN 90 371

INTEGER :: nhtype, n1dat, n2dat

REAL :: delxdat, delydat, x0dat, y0dat

END TYPE GridParams

!---horizontal relative coordinates

TYPE :: HRelativeCoords

INTEGER :: icoord, jcoord

REAL :: xcoord, ycoord

END TYPE HRelativeCoords

Example 8.9: DERIVED TYPE definitions for interpolation to surface grids.

Assume that the external grid is rectangular with uniform grid spacings in
either direction. The grid can then be completely defined using the attributes
stored in a variable of type GridParams. In particular the attributes n1dat
and n2dat are the dimensions of the data grid in the X- and Y-direction.
The relative coordinates of each data point are stored in a 2-D array of type
HRelativeCoords using the following procedure

!---declare

TYPE (GridParams) :: surfacegrid

TYPE (HRelativeCoords), SAVE, ALLOCATABLE, DIMENSION(:,:) :: &

& gridcoords

!---define the external data grid

surfacegrid%n1dat = ...; surfacegrid%n2dat = ...

...

!---allocate

n1dat = surfacegrid%n1dat; n2dat = surfacegrid%n2dat

ALLOCATE (gridcoords(n1dat,n2dat),STAT=errstat)

!---evaluate and store the relative coordinates of the data grid

idat 110: DO idat=1,n1dat

jdat 110: DO jdat=1,n2dat

gridcoords(idat,jdat)%icoord = ...; gridcoords(idat,jdat)%jcoord = ...

gridcoords(idat,jdat)%xcoord = ...; gridcoords(idat,jdat)%ycoord = ...

ENDDO idat 110

ENDDO jdat 110

Example 8.10: storing the relative coordinates of an external data grid.

8.1.5 Modules

Modules are program units which can be used within a FORTRAN 90 pro-
gram in two ways. Firstly, variables which need to be accessible in different

372 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

program routines can be declared within a module. These types are further
denored as “declaration modules”. In COHERENS V1, all variables with a
global scope were stored in a COMMON block located in a .inc file and are
made accessible with a INCLUDE statement. In COHERENS V2.0 there are
no COMMON blocks any more, since the declarations are made within a mo-
dule and become accessible to a program unit by putting the appropriate
USE statement.

As an example, the example below shows the declarations given in the
module currents for all arrays related to currents

MODULE currents

IMPLICIT NONE

REAL, ALLOCATABLE, DIMENSION(:,:) :: p2dbcgradatu, udevint, udfvel, udvel, &

& udvel old, umpred, umvel

REAL, ALLOCATABLE, DIMENSION(:,:) :: p2dbcgradatv, vdevint, vdfvel, vdvel, &

& vdvel old, vmpred, vmvel

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: p3dbcgradatu, ufvel, uvel, uvel old

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: p3dbcgradatv, vfvel, vvel, vvel old

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: wvel, wphys

SAVE

END MODULE currents

Example 8.11: contents of the currents module.

If one or more of these arrays are used in a program unit, a USE statement
must appear in the declaration part:

USE currents

Other types of application of the FORTRAN 90 module concept are the so-
called “module routines”. These routines have the same form and purpose as
the usual external SUBROUTINE and FUNCTION subprograms, except that:

• Module routines accept optional arguments, keyword arguments, array
valued function results and can be used to construct generic interfaces
without the need to program explicit interfaces.

• Contrary to external sub-programs, module routines require that a
proper USE statement must be given in the calling sub-program.

8.1. IMPLEMENTATION OF FORTRAN 90 373

Module routines are mainly used in COHERENS to construct so-called “li-
braries”, i.e. an ensemble of routines with a general common purpose usually
implemented through generic interfaces. They are quasi-independent of the
main source code. For example, all specific MPI and netCDF routine calls
are located in the files MPI comms.F90 and cf90 routines.F90. In this way,
only one of these files has to be re-programmed when an newer version of the
MPI or netCDF is implemented in the future. A list of module routine files is
given in Table 12.2.

8.1.6 Generic procedures

Generic procedures group a series of procedures with similar functionality
together under a common name. This generalises the FORTRAN 77 concept
of INTRINSIC routines. The generic name is defined via an INTERFACE
statement block. This is illustrated by the following example of the read vars
generic routine

MODULE inout routines

....

INTERFACE read vars

MODULE PROCEDURE read vars int 0d, read vars int 1d, &

& read vars int 2d, read vars int 3d, &

& read vars int 4d, read vars real 0d, &

& read vars real 1d, read vars real 2d, &

& read vars real 3d, read vars real 4d

END INTERFACE

Example 8.12: definition of a generic routine through an INTERCACE block
statement.

The generic routine read vars is called when data have to be read from an
external data file in COHERENS standard format. The appropriate routine
is selected by the program from the list in the MODULE PROCEDURE state-
ment, depending on the type and rank of the argument which returns the
data to be read. In this way the input data argument can be of type INTEGER
or REAL and represent scalars or arrays of rank 1 to 4. The FORTRAN code
of the specific routines with the same generic name needs to be located in
the same file (inout routines.f90) where the INTERFACE statement is made.
Note, that although each specific routine must have the same number of
non-optional arguments, the number and type of optional arguments may
differ.

If a call to a generic or non-generic module routine is made, the USE
statement must be given in the declaration part of the calling routine.

374 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

USE module name, ONLY: routine name

Example 8.13: syntax of a USE statement for module routines.

where module name is the name of the module and routine name the name
of the (non)-generic routine. Consider the following example in the file
Grid Arrays.F90:

SUBROUTINE read grid

...

USE inout routines, ONLY: close filepars, open filepars, &

& read glbatts mod, read varatts mod, &

& read vars

...

CALL read vars(gsigcoord,filepars,varid,varatts)

...

END SUBROUTINE read grid

Example 8.14: example of a USE statement for module routines.

since gsigcoord is a REAL array of rank 3, the actually called routine is
read vars real 3d.

8.1.7 Internal documentation and structured layout of
the code

The COHERENS programming conventions include rules for internal docu-
mentation and code layout. These rules and some of the conventions dis-
cussed in the sections above are illustrated in Example 8.15 which shows
the complete code of routine Zdif at C which calculates the vertical diffusion
term in a scalar transport equation. A line number is added for illustrative
purposes in the first four columns at each line in the example. This means
that the actual code line (in this example only) starts in column 5. Note
that the numbers in the discussion below refer to specific lines.

Five parts can be distinguished: a header with the routine declaration and
comments, declaration part, initialisation, “main” code lines and finalisation.

header lines 1–19 with the following information:

• name of the routine and a short description

• name(s) of the author(s)

• a more detailed description (if needed) under the Description header

8.1. IMPLEMENTATION OF FORTRAN 90 375

• reference to a publication or section of the user manual

• the name(s) of the sub-programs calling the routine

• the name(s) of the routines called in this routines (the routines
log timer in and log timer out are called in most routines and may
be omitted here)

declaration part This consists of the following segments

• lines 20–29: USE statements. The ONLY attribute is given for
module routines only.

• lines 30–32 with the IMPLICIT NONE statement

• lines 33–44: declaration of the arguments with the INTENT at-
tribute (preceded by the *Arguments* comment line)

• lines 45–74: comment lines with a description of the arguments
in a three column format (name, type, purpose), the unit of the
variable is given at the end of the line

• lines 75–88: declaration of all local variables. Except for a few ex-
ceptions in the program, local arrays are declared within a #ifdef
block, either as allocatable or automatic arrays depending on the
status of the -DALLOC compiler option.

• lines 89–96: internal documentation of the most meaningfull local
variables using the same three column format

• lines 97–98: two blank lines to make a clear separation between
the header and the program code itself

initialisation

• lines 99–101: write information to the log-file

• lines 102–121: allocate local arrays in case -DALLOC is defined.
Note that each ALLOCATE statement is checked for errors.

• lines 122–161: initialise parameters and arrays

main code

• lines 162–279: calculation of the vertical diffusion term in a scalar
transport equation (including boundary conditions)

finalisation

• lines 280–289: deallocation of local arrays if -DALLOC is defined.

• line 290: write information to the log-file

376 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

• lines 291–292: two blank lines

• line 293: the RETURN statement is not required by the FORTRAN
90 standard, but has been implemented in the COHERENS pro-
gramming convention

• line 294: blank line

• line 295: END statement followed by the name of the routine
(the latter is not required in FORTRAN 90 but included in the
convention for clarity)

sectioning
The actual code, i.e. excluding the declaration part, is divided into
numbered sections, subsections, subsubsections. DO loop blocks within
one of these sections has a label composed of the name of the iteration
counter followed by , followed by the section number. An extra num-
ber is attached is there are more than one DO loops within a section,
subsection, For example the k-loop which starts on line 218, is the
second one in subsection 3.3 and has the label k 332.

8.1. IMPLEMENTATION OF FORTRAN 90 377

1 :SUBROUTINE Zdif at C(psic,tridcfc,vdifcoefatw,novars,ibcsur,ibcbot,nbcs,&

2 : & nbcb,bcsur,bcbot,kbounds)

3 :!**

4 :!

5 :! *Zdif at C* Vertical diffusion term for a quantity at C-nodes

6 :!

7 :! Author - Patrick Luyten

8 :!

9 :! Description -

10 :!

11 :! Reference -

12 :!

13 :! Calling program - transport at C 3d, transport at C 4d1,

14 :! transport at C 4d2

15 :!

16 :! Module calls - error alloc

17 :!

18 :!**

19 :!

20 :USE depths

21 :USE grid

22 :USE gridpars

23 :USE iopars

24 :USE physpars

25 :USE switches

26 :USE syspars

27 :USE timepars

28 :USE error routines, ONLY: error alloc

29 :USE time routines, ONLY: log timer in, log timer out

30 :

31 :IMPLICIT NONE

32 :

33 :!

34:!* Arguments

35 :!

36 :INTEGER, INTENT(IN) :: ibcbot, ibcsur, nbcb, nbcs, novars

37 :INTEGER, INTENT(IN), DIMENSION(2) :: kbounds

38 :REAL, INTENT(IN), DIMENSION(1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,&

39 : & nz,novars) :: psic

40 :REAL, INTENT(INOUT), DIMENSION(ncloc,nrloc,nz,4,novars) :: tridcfc

41 :REAL, INTENT(IN), DIMENSION(ncloc,nrloc,nz+1) :: vdifcoefatw

378 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

42 :REAL, INTENT(IN), DIMENSION(ncloc,nrloc,nbcs,novars) :: bcsur

43 :REAL, INTENT(IN), DIMENSION(ncloc,nrloc,nbcb,novars) :: bcbot

44 :

45 :!

46 :! Name Type Purpose

47 :!---

48 :!*psic* REAL C-node quantity to be diffused [psic]

49 :!*tridcfc* REAL Tridiagonal matrix for implicit vertical solution

50 :!*vdifcoefatw*REAL Diffusion coefficient at W-nodes [m^2/s]

51 :!*novars* INTEGER Number of variables

52 :!*ibcsur* INTEGER Type of surface boundary condition

53 :! = 0 => Neumann (zero flux)

54 :! = 1 => Neumann (prescibed flux)

55 :! = 2 => Neumann (using transfer velocity)

56 :! = 3 => Dirichlet at first C-node below the surface

57 :! = 4 => Dirichlet at the surface

58 :!*ibcbot* INTEGER Type of bottom boundary condition

59 :! = 0 => Neumann (zero flux)

60 :! = 1 => Neumann (prescibed flux)

61 :! = 2 => Neumann (using transfer velocity)

62 :! = 3 => Dirichlet at first C-node above the bottom

63 :! = 4 => Dirichlet at the bottom

64 :!*nbcs* INTEGER Last dimension of array bcsur

65 :!*nbcb* INTEGER Last dimension of array bcbot

66 :!*bcsur* REAL Data for surface boundary condition

67 :! (:,:,1,:) => prescribed surface flux or surface value

68 :! (:,:,2,:) => transfer velocity [m/s]

69 :!*bcbot* REAL Data for bottom boundary condition

70 :! (:,:,1,:) => prescribed surface flux or surface value

71 :! (:,:,2,:) => transfer velocity [m/s]

72 :!*kbounds* INTEGER Vertical bounds

73 :!

74 :!---

75 :!

76 :!*Local variables

77 :!

78 :INTEGER :: ivar, k, kmax, kmin, npcc

79 :REAL :: theta vdif1, xexp, ximp

80 :#ifdef ALLOC

81 : REAL, SAVE, ALLOCATABLE, DIMENSION(:,:) :: array2dc1, array2dc2, &

82 : & array2dc3

8.1. IMPLEMENTATION OF FORTRAN 90 379

83 : REAL, SAVE, ALLOCATABLE, DIMENSION(:,:,:) :: array3d, difflux

84 :#else

85 : REAL, DIMENSION(ncloc,nrloc) :: array2dc1, array2dc2, array2dc3

86 : REAL, DIMENSION(ncloc,nrloc,2:nz) :: array3d

87 : REAL, DIMENSION(ncloc,nrloc,nz+1) :: difflux

88 :#endif /*ALLOC*/

89 :

90 :!

91 :! Name Type Purpose

92 :!--

93 :!*difflux* REAL Diffusive flux (times factor) at W-nodes [m^2/psic]

94 :!

95 :!--

96 :!

97 :

98 :

99 :procname(pglev+1) = ’Zdif at C’

100:CALL log timer in(npcc)

101:

102:!

103:!1. Allocate arrays

104:!------------------

105:!

106:

107:#ifdef ALLOC

108: ALLOCATE (array2dc1(ncloc,nrloc),STAT=errstat)

109: CALL error alloc(’array2dc1’,2,(/ncloc,nrloc/),real type)

110: ALLOCATE (array2dc2(ncloc,nrloc),STAT=errstat)

111: CALL error alloc(’array2dc2’,2,(/ncloc,nrloc/),real type)

112: ALLOCATE (array2dc3(ncloc,nrloc),STAT=errstat)

113: CALL error alloc(’array2dc3’,2,(/ncloc,nrloc/),real type)

114: ALLOCATE (array3d(ncloc,nrloc,2:nz),STAT=errstat)

115: CALL error alloc(’array3d’,3,(/ncloc,nrloc,nz-1/),real type)

116: IF (iopt vdif impl.NE.2) THEN

117: ALLOCATE (difflux(ncloc,nrloc,nz+1),STAT=errstat)

118: CALL error alloc(’difflux’,3,(/ncloc,nrloc,nz+1/),real_type)

119: ENDIF

120:#endif /*ALLOC*/

121:

122:!

123:!2. Initialise

380 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

124:!-------------

125:!

126:!---fluxes

127:IF (iopt vdif impl.NE.2) THEN

128: WHERE (maskatc int)

129: difflux(:,:,1) = 0.0

130: difflux(:,:,nz+1) = 0.0

131: END WHERE

132:ENDIF

133:

134:!---work space arrays

135:WHERE (maskatc int)

136: array2dc1 = deptotatc(1:ncloc,1:nrloc)**2

137:END WHERE

138:k 201: DO k=2,nz

139: WHERE (maskatc int)

140: array3d(:,:,k) = vdifcoefatw(:,:,k)&

141: & /(array2dc1*delsatw(1:ncloc,1:nrloc,k))

142: END WHERE

143:ENDDO k 201

144:

145:IF (ibcsur.LE.2) THEN

146: WHERE (maskatc int)

147: array2dc2 = deptotatc(1:ncloc,1:nrloc)*delsatc(1:ncloc,1:nrloc,nz)

148: END WHERE

149:ENDIF

150:

151:IF (ibcbot.LE.2) THEN

152: WHERE (maskatc int)

153: array2dc3 = deptotatc(1:ncloc,1:nrloc)*delsatc(1:ncloc,1:nrloc,1)

154: END WHERE

155:ENDIF

156:

157:!---time factors

158:xexp = delt3d*(1.0-theta vdif)

159:ximp = delt3d*theta vdif

160:theta vdif1 = 1.0-theta vdif

161:

162:!

163:!3. Diffusion terms

164:!------------------

8.1. IMPLEMENTATION OF FORTRAN 90 381

165:!

166:

167:ivar 300: DO ivar=1,novars

168:

169:!

170:!3.1 Explicit fluxes

171:!-------------------

172:!

173:

174: IF (iopt vdif impl.NE.2) THEN

175: k 310: DO k=2,nz

176: WHERE (maskatc int)

177: difflux(:,:,k) = xexp*array3d(:,:,k)*&

178: & (psic(1:ncloc,1:nrloc,k,ivar)-&

179: & psic(1:ncloc,1:nrloc,k-1,ivar))

180: END WHERE

181: ENDDO k 310

182: ENDIF

183:

184:!

185:!3.2 Explicit terms

186:!-----------------

187:!

188:

189: IF (iopt vdif impl.NE.2) THEN

190: k 320: DO k=kbounds(1),kbounds(2)

191: WHERE (maskatc int)

192: tridcfc(:,:,k,4,ivar) = tridcfc(:,:,k,4,ivar) + &

193: & (difflux(:,:,k+1)-difflux(:,:,k))&

194: & /delsatc(1:ncloc,1:nrloc,k)

195: END WHERE

196: ENDDO k 320

197: ENDIF

198:

199:!

200:!3.3 Implicit terms

201:!------------------

202:!

203:

204: IF (iopt vdif impl.NE.0) THEN

205:

382 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

206:! ---lower flux

207: kmax = MERGE(nz,nz-1,ibcsur.LE.2)

208: k 331: DO k=2,kmax

209: WHERE (maskatc int)

210: array2dc1 = ximp*array3d(:,:,k)/delsatc(1:ncloc,1:nrloc,k)

211: tridcfc(:,:,k,1,ivar) = tridcfc(:,:,k,1,ivar) - array2dc1

212: tridcfc(:,:,k,2,ivar) = tridcfc(:,:,k,2,ivar) + array2dc1

213: END WHERE

214: ENDDO k 331

215:

216:! ---upper flux

217: kmin = MERGE(1,2,ibcbot.LE.2)

218: k 332: DO k=kmin,nz-1

219: WHERE (maskatc int)

220: array2dc1 = ximp*array3d(:,:,k+1)&

221: & /delsatc(1:ncloc,1:nrloc,k)

222: tridcfc(:,:,k,2,ivar) = tridcfc(:,:,k,2,ivar) + array2dc1

223: tridcfc(:,:,k,3,ivar) = tridcfc(:,:,k,3,ivar) - array2dc1

224: END WHERE

225: ENDDO k 332

226:

227: ENDIF

228:

229:!

230:!3.4 Boundary conditions

231:!----------------------

232:!

233:!3.4.1 Surface

234:!-------------

235:!

236:! ---Neumann (prescribed flux)

237: IF (ibcsur.EQ.1) THEN

238: WHERE (maskatc int)

239: tridcfc(:,:,nz,4,ivar) = tridcfc(:,:,nz,4,ivar) + &

240: & delt3d*bcsur(:,:,1,ivar)/array2dc2

241: END WHERE

242:

243:! ---Neumann (using transfer velocity)

244: ELSEIF (ibcsur.EQ.2) THEN

245: WHERE (maskatc int)

246: tridcfc(:,:,nz,2,ivar) = tridcfc(:,:,nz,2,ivar) + &

8.1. IMPLEMENTATION OF FORTRAN 90 383

247: & ximp*bcsur(:,:,2,ivar)/array2dc2

248: tridcfc(:,:,nz,4,ivar) = tridcfc(:,:,nz,4,ivar) - &

249: & delt3d*bcsur(:,:,2,ivar)*&

250: & (theta vdif1*psic(1:ncloc,1:nrloc,nz,ivar)-&

251: & bcsur(:,:,1,ivar))/array2dc2

252: END WHERE

253: ENDIF

254:

255:!

256:!3.4.2 Bottom

257:!------------

258:!

259:! ---Neumann (prescribed flux)

260: IF (ibcbot.EQ.1) THEN

261: WHERE (maskatc int)

262: tridcfc(:,:,1,4,ivar) = tridcfc(:,:,1,4,ivar) - &

263: & delt3d*bcbot(:,:,1,ivar)/array2dc3

264: END WHERE

265:

266:! ---Neumann (using transfer velocity)

267: ELSEIF (ibcbot.EQ.2) THEN

268: WHERE (maskatc int)

269: tridcfc(:,:,1,2,ivar) = tridcfc(:,:,1,2,ivar) + &

270: & ximp*bcbot(:,:,2,ivar)/array2dc3

271: tridcfc(:,:,1,4,ivar) = tridcfc(:,:,1,4,ivar) - &

272: & delt3d*bcbot(:,:,2,ivar)*&

273: & (theta vdif1*psic(1:ncloc,1:nrloc,1,ivar)-&

274: & bcbot(:,:,1,ivar))/array2dc3

275: END WHERE

276: ENDIF

277:

278:ENDDO ivar 300

279:

280:!

281:!4. Deallocate arrays

282:!--------------------

283:!

284:

285:#ifdef ALLOC

286: DEALLOCATE (array2dc1,array2dc2,array2dc3,array3d)

287: IF (iopt vdif impl.NE.2) DEALLOCATE (difflux)

384 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

288:#endif /*ALLOC*/

289:

290:CALL log timer out(npcc,itm vdif)

291:

292:

293:RETURN

294:

295:END SUBROUTINE Zdif at C

Example 8.15: example layout and internal documentation of a COHERENS
routine.

Declaration modules have a similar layout and internal documentation,
except that the code only consists of the MODULE module name declaration
on the first, type declarations and the END MODULE module name statement
on the last line. This is illustrated in Example 8.16.

MODULE density

!**

!

! *density* Density arrays

!

! Author - Patrick Luyten

!

! Version - @(COHERENS)density.f90 V2.0

!

! Description -

!

!**

!

IMPLICIT NONE

REAL, ALLOCATABLE, DIMENSION(:,:,:) :: beta sal, beta temp, dens, sal, temp

SAVE

!

! Name Type Purpose

!--

!*beta sal* REAL Salinity expansion coefficient [1/PSU]

!*beta temp*REAL Temperature expansion coefficient [1/deg C]

8.2. SPECIFIC PROGRAM FEATURES 385

!*dens* REAL Mass density [kg/m^3]

!*sal* REAL Salinity [PSU]

!*temp* REAL Temperature [deg C]

!

!**

END MODULE density

Example 8.16: example layout and internal documentation of a COHERENS
declaration module.

8.2 Specific program features

8.2.1 Key ids

Key ids are named constants which refer to a specific item, such as a variable,
file class, tidal constituent or error code. The name of a key id is composed
by the name of the general “class” to which the item belongs, followed by a
’ ’ and its specific name. Some examples are given below.

1. Variable key ids have the common class name iarr. Their specific names
are the same as the FORTRAN name. For example, iarr sal is the key id
of the program variable ’sal’ which is salinity. Variable ids are used to
define the variables used to set up user-defined output (see Chapter 20
for details).

2. Key ids referring to tidal constituents belong to the class icon . The spe-
cific name is given by the constituent’s traditional name, e.g. icon M2
for the M2 tide. Tidal key ids are a practical tool for defining the tidal
constituents applied in the open boundary conditions or for selecting
the constituents for the astronomical tidal force.

3. The class name for model forcing files is ’io ’. The specific name refers
to the type of forcing. For example, io metsur is the key id for the
“ensemble” of properties related to the meteorological surface data file.

A list of available key classes is displayed in Table 8.2.

8.2.2 Date and time formats

Time can be represented in the program in four different formats. The first
two are absolute calendar date and times. The next two are relative times
with respect to a reference date.

386 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

Table 8.2: List of available key classes

Class Purpose Defined in Examples

io attributes of a forcing file iopars.f90 io modgrd (model grid file)
ics initial conditions iopars.f90 ics phys (physical initial conditions)
igrd surface grids iopars.f90 igrd meteo (meteo data grid)
ierrno error codes iopars.f90 ierrno alloc (allocation error)
iarr model variables modids.f90 iarr temp (temperature)
icon tidal constituents tide.f90 icon O1 (O1 constituent)
itm timers for timing report iopars.f90 itm hydro (hydrodynamics)

1. A string format in the form of a string of lentime (23) characters:
‘yyyy/mm/dd;hh:mm:ss:mmm’ where yyyy = year, mm = month, dd
= day in month, hh = hour in day, mm = minutes, ss = seconds, mmm
= milliseconds.

• Examples

CHARACTER (LEN=lentime) :: CDateTime, CEndDateTime, &

& CStartDatetime

where the first variable represents the current date (updated at
each 2-D time step), the next two respectively the end and start
date of the simulation, defined by the user, e.g.

CStartDatetime = ’2009/06/15;05:09:00:000’

CEndDatetime = ’2009/07/01;15:45:06:000’

• These time formats are part of the model setup and are used to
calculate the solar altitude for evaluation of surface solar irradi-
ance and as date/time stamp in all time series input/output.

• Precision is 1 millisecond.

• The separators need to be at the correct positions, their values
are unimportant.

2. A vector INTEGER format in the form of a vector with 7 elements:
year, month, day, hour, minutes, seconds, milliseconds

• Examples

INTEGER, DIMENSION(7) :: IDateTime, IEndDateTime, &

& IStartDatetime

which have the same meaning as above.

8.2. SPECIFIC PROGRAM FEATURES 387

• The format is only used to perform internal date/time calcula-
tions.

• Precision is 1 millisecond.

3. A scalar INTEGER format

INTEGER (KIND=kndilong) :: nosecsrun

representing the number of seconds since the start of the simulation.

• Used internally to compare the date/time in a data file with the
current one in the simulation.

• Lower precision is 1 second, upper precision ∼68 years if longint
= 4 or (practically) unlimited otherwise (longint = 8).

4. A scalar INTEGER (“index”) format

INTEGER :: nt

which equals the current time “index” defined as the number of (2-D)
time steps since the start of the simulation.

• Used both internally as externally by the user to set output times.

• Precision is the number of seconds within one time step. This
variable is defined in single precision.

The following additional time parameters are used

REAL :: delt2d User defined 2-D time step in seconds. Although de-
fined as a REAL variable, to prevent rounding errors in
the calculation of the calendar date and time its preci-
sion has been restricted to 1 millisecond for time steps
smaller than 1000 seconds and to 1 second otherwise.

REAL :: time zone User defined time zone, i.e. difference of local time
with respect to GMT in hours. Difference is posi-
tive (negative) eastwards (westwards) from Green-
wich. Default is 0. The program assumes that the
start, end and current date and time within the pro-
gram are given in local time. Important to note is
that the date and time, obtained from external data
files, must be given with respect to the same time
zone as the one used in the program.

INTEGER :: ic3d User defined number of 2-D time steps within one 3-D
time step.

388 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

8.2.3 Data flags

Data flags are commonly used in observational data sets for representing
invalid data. They have been introduced in the COHERENS code to represent
undefined values. The following variables are defined in the program for the
flagging of model variables

REAL :: real fill Large negative number used for flagging of REAL model
variables.

REAL:: real min Large negative number used to determine whether a real
variable is flagged. More specifically, the variable X is
taken as flagged if X≤real min. Obviously, real fill<real min.

INTEGER :: int fill Large negative number used for flagging of INTEGER model
variables.

LOGICAL :: log fill Large negative number used for flagging of LOGICAL model
variables.

Data flags are used (e.g.) for the following purposes:

• If a data value in a vertical open boundary profile has been flagged,
a zero gradient condition is applied at that particular point, and the
data value is no longer considered as an external value.

• Flagged values in a SST forcing file are automatically replaced by the
modelled temperature at the highest (near surface) level.

• Flags are used to disable interpolation at external locations.

• Flagging of some user-defined model parameters has been implemented
as a practical utility in the program. It informs the program that the
parameter has some specific value unknown by the user, but known to
the program.

Although most model grid arrays are not defined on land areas, no flags are,
for practical reasons, applied in this case. This behaviour may be changed in
future versions where land values can be flagged with the netCDF FillValue
attribute.

8.2.4 Variable units

Variable units are based on the ‘kg-meter-sec-PSU’ system. Table 8.3 repre-
sents the units of the principle variables used in the program. Note that the
unit for shear stress has, for convenience, been normalised with the (refer-
ence) density.

8.2. SPECIFIC PROGRAM FEATURES 389

Table 8.3: Units of principal variables

variable type unit

length m
time s
mass kg
currents m/s
transports m2/s
temperature deg C
salinity PSU (=10−3kg/kg)
angle radians
density kg/m3

horizontal coordinates m or fractional degrees
vertical coordinates m or dimensionless
pressure Pa
diffusion coefficients m2/s
frequencies radians/s
acceleration m/s2

stress m2/s2 (Pa divided by density)
heat flux W/m2

salinity flux PSU m/s
turbulent energy m2/s2 (or J/kg)
turbulent dissipation m2/s3 (or W/kg)

390 CHAPTER 8. PROGRAM CONVENTIONS AND TECHNIQUES

	III Description of the model code
	Program conventions and techniques
	Implementation of FORTRAN 90
	COHERENS programming conventions
	Data types
	Allocatable arrays
	Derived types
	Modules
	Generic procedures
	Internal documentation and structured layout of the code

	Specific program features
	Key ids
	Date and time formats
	Data flags
	Variable units

