Chapter 5

Numerical methods

5.1 Introduction

The numerical methods described in this chapter are based to a large extent
upon previous work described in the COHERENS V1 manual (Luyten et al.,
1999).

Conservative finite differences (equivalent to a finite volume technique for
the Cartesian mesh) are used to discretise the mathematical model in space.
The grid chosen for horizontal discretisation is the well known Arakawa
“C” grid (Mesinger & Arakawa, [1976) which staggers the currents and pres-
sure/elevation nodes to give a good representation of the crucial gravity waves
and provides simple representations of open and coastal boundaries. As dis-
cussed in Section the model equations are solved on a rectangular or
curvilinear grid in the horizontal and a o- or extended o-coordinate grid in
the vertical, whereby varying surface and bottom boundaries are transformed
into constant surfaces. This provides for accurate representation of surface
and bottom boundary processes. It also results in an equal number of cells
in each vertical water column.

Two options are available to solve the hydrodynamic equations. The orig-
inal implementation in COHERENS used the mode-splitting technique as in
the model of Blumberg & Mellor| (1987) to solve the momentum equations.
This method consists in solving the depth-integrated momentum and conti-
nuity equations for the “external” or barotropic mode with a small time step
to satisfy the stringent CFL stability criterium for surface gravity waves,
and the 3-D momentum and scalar transport equations for the “internal” or
“baroclinic” mode with a larger time step. A “predictor” and a “corrector”
step are applied for the horizontal momentum equations to satisfy the basic
requirement that the depth-integrated currents obtained from the the 2-D
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and 3-D mode equations, have identical values.

Recently, the possibility to solve the momentum equations semi-implicitly
as in the model of(Chen (2003, based on the original work of|(Casulli & Cheng
(1992) was implemented. With this method, there is no longer need to solve
the depth-integrated momentum equations. The stringent CFL stability cri-
terium is relaxed by treating the terms that provoke the barotropic mode
in an implicit manner. After an explicit “predictor” step, velocities are cor-
rected with the implicit free surface correction in the “corrector” step. In this
method, the free surface correction follows from the inversion of the elliptic
free surface correction equation obtained from the 2-D continuity equation.

Much effort has been made to implement suitable schemes for the advec-
tion of momentum and scalars. A variety of schemes are available from the lit-
erature, e.g. second and higher order central and upwind schemes (see |[Hirsch,
1990, for a review), Flux Corrected Transport (FCT; Boris & Book, [1979),
Total Variation Diminishing (TVD;|Roe, |1986} |Sweby, 1984), Quadratic Up-
stream Interpolation for Convective Kinematics (QUICK; [Leonard, [1979),
Second Order Moments (SOM; Prather] 1986; [Hofmann & Maquedal, 2006)),
Piecewise Parabolic Method (PPM; Colella & Woodward, |1984; James|, 1996)).
Implementing different schemes within the same model code is a tedious task
since most higher order schemes impose a coupling between space and time
discretisation. The basic choice in the program will therefore be limited to
the upwind and the TVD scheme to reduce the programming and compu-
tational overhead. The latter scheme is implemented with the symmetrical
operator splitting method for time integration and can be considered as a
useful tool for the simulation of frontal structures and areas with strong cur-
rent gradients. The upwind scheme, on the other hand, is only first order
accurate and therefore more diffusive, and should be used if CPU time is
considered of more importance than accuracy.

The following additional issues are noted:

e When the mode-splitting method is used, scalar quantities are advected
with a “filtered” velocity (us,vs) derived from the “corrected” baro-
clinic currents and the depth-integrated current averaged over the in-
ternal time step (Deleersnijder, |1993).

e Sink terms are discretised explicitly in time for cell-centered scalars
to make the scheme more conservative, whereas a quasi-implicit for-
mulation is implemented for turbulence transport to ensure positivity
(Patankar] 1980).

This chapter is organised as follows:
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e The model grid, the grid indexing system and notational conventions
are described in Section 5.2

e The solution of the momentum equations is presented in Section [5.3]
e The scalar transport equations are discussed in Section [5.5]
e Numerical aspects of the turbulence module are given in Section

e The discretisations for one-dimensional (water column) and two-dimensional
(depth-averaged) applications are discussed in Section

e The general solution procedure is summarised in Section [5.8|

5.2 Model grid and discretisations

5.2.1 Grid nodes and indexing system

Figure [5.1] shows the horizontal layout of the C-grid domain as it appears in
curvilinear coordinates (£1, & ). A normalisation is applied so that A§;=A&=1.
For convenience, the notations X and Y will be used for & and &. It is re-
marked that X and Y do not refer to Cartesian axes in general. The following
nodes can be distinguished:

e C-nodes (empty circles): located at the centers of the grid cells, used
for 2-D and 3-D scalar quantitities (elevations, water depths, ...) and
wind components

e U-nodes (horizontal bars): at the centers of the left (West) and right
(East) cell faces, used for the X-components of vectors except the sur-
face wind (transports, depth-mean currents, bottom stress, ...)

e V-nodes (vertical bars): at the centers of the lower (South) and upper
(North) cell faces, used for the Y-components of vectors except the
surface wind (transports, depth-mean currents, bottom stress, ...)

e UV-nodes (solid circles): at the corners of the grid cells, used for the
horizontal coordinate arrays which determine the geographical location
of the grid

Each horizontal grid cell has an index, generally denoted by ‘i, in the X-
direction between 1 and nc and an index (‘') in the Y-direction between 1
and nr. The indices refer to the position of a variable at its “natural” node

(C-, U-, V-, UV-node). This is illustrated in Figure
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Figure 5.1: Layout of the (global) computational grid in the horizontal.

As shown in Figure[5.1] the last column (to the East) and the last row (to
the North) are open ended. In this way the domain contains the same number
of C-, U-, V- and UV-nodes. This was not implemented in COHERENS V1
but introduced in the new version to allow a more efficient domain decom-
position in case of a parallel application. The drawback is that the C-node
grid points with X-index nc or Y-index nr have to be declared as spurious
dry cells. This means in practice that, whereas the computational size of the
domain is ncxnr, the physical size is (nc-1)x(nr-1) for C-node, ncx(nr-1) for
U-node, (nc-1)xnr for V-node and ncxnr for UV-node quantities.

In analogy with the horizontal directions, a staggered grid is used in the
vertical as well. The water column is divided into nz layers. The layers,
which in transformed vertical coordinates have equal sizes, are illustrated in
Figure 5.3l The previous C-nodes are vertically located at the midst of each
layer. A new type of node, the W-node, is introduced located at the layer
itself, i.e. vertically between the C-nodes and at the bottom and the surface.
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Figure 5.2: Grid indexing in the horizontal plane.

The vertical position of a 3-D model variable is determined by the vertical
(Z-)index (“k") which varies between 1 and nz for C-node and between 1 and
nz+1 for W-node quantities.

The grid indexing system for the full 3-D mode is shown in Figure |5.4]
Combining horizontal and vertical nodes, new types of “combined” nodes
arise. The following nodal types are considered in the program:

e C-nodes: at the center of a 3-D grid cell
e U-nodes: at the center of a West/East lateral face
e V-nodes: at the center of a South/North lateral face

e UV-nodes: along the intersection lines of the lateral faces horizontally,
halfway between the lower and upper surface vertically

e W-nodes: at the centers of the lower and upper boundary faces
e UW-nodes: as the U-nodes horizontally, as the W-nodes vertically

e VW-nodes: as the V-nodes horizontally, as the W-nodes vertically
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Figure 5.3: Layout of the computational grid in the vertical.

e UVW-nodes: at the corners of a 3-D grid cell (as UV-nodes horizontally
and as W-nodes vertically)

The W-nodes are used for the (transformed) vertical current w and for tur-
bulence variables (k, ¢, [, vertical diffusion coefficients and related variables).
The UW-, VW- and UVW-nodes are only needed by the program for local
internal variables.

The lower bound of all grid indices is 1, the upper boundary depends
on the nodal type and on whether it is taken along the computational or
physical domain. A complete listing is given in Table [5.1]

5.2.2 Open boundaries

Open boundaries are defined as locations on the model grid where the solution
of the discretised model equations requires values of the transport variable(s)
located outside the physical domain. Open boundary conditions have to be
specified at those locations. The program distinguishes four types of open
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Figure 5.4: Grid indexing in three-dimensional space.

boundaries:
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e U-open boundaries at U-velocity nodes needed to determine the values
of U,u and the advective/diffusive fluxes of scalars in the X-direction

e V-open boundaries at V-velocity nodes needed to determine the values
of Vv and the advective/diffusive fluxes of scalars in the Y-direction

e X-open boundaries at UV-nodes needed to determine the cross-stream
advective/diffusive fluxes of v and V'

e Y-open boundaries at UV-nodes needed to determine the cross-stream
advective/diffusive fluxes of u and U

5.2.3 Conventions

A quantity taken at a grid point on its natural node is written as @;; for a
2-D or Q;;i, for a 3-D variable. To simplify the notations, the indices 7, j, k
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Table 5.1: Upper bounds for the grid indices (i,j,k) as function of nodal type.

Node Computational Physical
X-index Y-index Z-index | X-index Y-index Z-index

C nc nr nz nc-1 nr-1 nz

U nc nr nz nc nr-1 nz

A% nc nr nz nc-1 nr nz
uv nc nr nz nc nr nz
W nc nr nz+1 nc-1 nr-1 nz+1
Uw nc nr nz+1 nc nr-1 nz+1
VW nc nr nz—+1 nc-1 nr nz+1
UVW nc nr nz—+1 nc nr nz+1

are omitted if no confusion is possible. This means e.g. that @Q; 114 (3-D
quantity) can be written as ;11 or that @Q;_; (2-D quantity) is the same as
Qi—1-

If a quantity needs to be evaluated at a point, different from its natural
position, its value is determined by taking an average over the neighbouring
points. This is indicated by one of the superscripts ¢, “, ¥, ¥, ...referring to
the point at which the quantity is interpolated. The program allows to use
uniform averaging with equal weight factors or non-uniform averaging with
unequal weights (see Section . To illustrate the convention, uniform av-
eraging is assumed here for simplicity. The Coriolis terms in the momentum

equations require a 4-point interpolation of the u and v velocities:

v
i = Uik + Uigore + Ui+ i)

u
Vije = Z(Uijk + Vic1jk T Vigy1k T Uifl,j+1,k)

(5.1)

The next example is a centered quantity () evaluated at respectively the U-,
V-, W-, UW- and VW-node with the same index values:

u 1
ijk T Q(Qifl,jk + Qijk)
v 1
ijk — §(Qz‘,j—1,k; + Qij)
w 1
i = 5(Quk—1 + Quk)

1
;‘ﬁ; = Z(Qij,k—l + Qi + Qi—1jk—1 + Qi-1,4k)



5.2. MODEL GRID AND DISCRETISATIONS 181

1
ik = Z(Qij,k—l + Qijk + Qij-1p-1+ Qij1r) (5.2)

A double index notation of the form 4; : iy or j; : jo is sometimes in-
troduced in expressions related to open boundary conditions, where the first
index 7; (j1) is used at western (southern) boundaries and the second index
iy (j2) at eastern (northern) boundaries, such as in the following example
expressions

Uit 1:i—1,5k 5 Vijj—1k

5.2.4 Space discretisation

The grid is defined by specifying the following three arrays:

e the zy-coordinates (in Cartesian or spherical coordinates) zy,; of the
cell corners (represented by the 2-D array gxcoordglb(nc,nr))

e the zy-coordinates (in Cartesian or spherical coordinates) xo,;; of the
cell corners (represented by the 2-D array gycoordglb(nc,nr))

e the o-coordinates o;j; of the W-nodes (represented by the array
gscoordglb(nc,nr,nz+1)). Note that o;;; = 0 (bottom) and oy .41 = 1
(surface).

As discussed in Sections the grid spacings Az, Azy, Az are set
equal to respectively the metric coefficients hq, hs, h3 by normalisation. The
latter notation will be used for convenience in the following.

Spatial differences in the x1-, xo- or vertical direction are represented
respectively by the operators A,, A,, A,. The superscript ¢, “, v, © ", o
or " indicates the grid (nodal) location of the result. This is illustrated with
the following examples (where () represents a centered quantity in the third

example):

C
Aluije = Uig1jk — Wijk
v, C .
JUiie = §(Uz‘jk + Uitk = Yij—1k — Uit j—1k)
AQijr = Qijk — Qijr—1
C
AYVii = Vigrn =V (5.3)

Grid spacings are “naturally” evaluated at the cell centre. Conforming the
previous rules interpolated values at other grid locations are indicated by a
superscript, e.g. hy.;, hg);. Note that the grid indices on the left hand side
of the expressions refer to the destination node and not the source node
of the interpolation. An overview of all subscript and superscript notations,
used in this chapter, is given in Table
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Table 5.2: Subscript and superscript notation used in the numerical discreti-
sation formulae.

Type Purpose

subscripts

l X-index of the variable on the model grid (between 1 and either
nc-1 or nc)

Ji Y-index of the variable on the model grid (between 1 and either
nr-1 or nr)

k vertical index of the variable on the model grid (between 1 and
either nz or nz+1)

11:09 expression used in the spatial discretisation of open boundary
conditions, whereby the first index is taken at the western and
the second index at the eastern boundary

J1:72 expression used in the spatial discretisation of open boundary
conditions, whereby the first index is taken at the southern and
the second index at the northern boundary

superscripts

c quantity evaluated or interpolated at the cell centre

U quantity evaluated or interpolated at the U-node

v quantity evaluated or interpolated at the V-node

uv quantity evaluated or interpolated at the UV-node

w quantity evaluated or interpolated at the W-node

uw quantity evaluated or interpolated at the UW-node

vw quantity evaluated or interpolated at the VW-node

n quantity evaluated at the old baroclinic time t"

n+1 quantity evaluated at the new baroclinic time ¢"**

m quantity evaluated at the old barotropic time ¢

m+1 quantity evaluated at the new barotropic time ¢!

it quantity evaluated at the previous iteration level

i+ 1 quantity evaluated at the next iteration level

P “predicted” value

“Altered” value
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5.2.5 Time discretisation

The time discretisation of the model equations is summarised below. A
detailed description is given in the sections below.

e In case a mode-splitting technique is used (Blumberg & Mellor] [1987)),
separate time steps are taken for the 2-D “external” barotropic equa-
tions (A7) and the “internal” baroclinic equations (At). The 2-D time
step A7 has to be small enough to satisfy the Courant-Friedrichs-Lewy
(CFL) criterion (see equation below). The 3-D time step is a
multiple, M;, of At (typically of the order of 10-20) and the model
is integrated forward in time for NNV; baroclinic time steps (equal to
Ny My = My barotropic time steps). From stability analysis for linear
surface gravity waves

A
Ar < —22 5.4
and AR
At < min (5.5)

~ 2V 9 hnas
where Ahp;, = min(hy, hy) is the minimum horizontal grid spacing,
g = gAp/po the reduced gravity, h,q, the maximum water depth and
Ap a typical value for the vertical density difference. Since ¢ < ¢
the second condition is less constraining than the first one. A more
stringent condition for the 3-D mode, imposed by the explicit schemes
for horizontal advection, is that the horizontal distance travelled by a
fluid element during the internal time step At, must be smaller than
the grid spacing, or

(uAt vAt) <1 (5.6)

hy hy

e The semi-implicit hydrodynamic scheme only uses one (3-D) timestep.
In this case, M; = 1 and A7 = At. Because of the implicit treatment
of the free surface wave, there is no need for the 2-D CFL time step

restriction (5.4)) for stability. The convective CFL criterion, eq. (5.6)),
still needs to be satisfied in all cells at all times.

e All horizontal derivatives are evaluated explicitly while vertical diffu-
sion is computed fully implicitly and vertical advection quasi-implicitly.

e A predictor-corrector method is used to solve the horizontal momentum
equations (4.61)—(4.62)). This satisfies the requirement (Blumberg &
Mellor, [1987)) that, when using a mode-splitting technique, the currents
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in the 3-D equations should have the same depth integral as the ones
obtained from the 2-D depth-integrated equations.

e A quasi-implicit method is implemented for the Coriolis terms.

e Time integration is performed with the operator splitting method in
conjunction with the TVD scheme for advection, whereas a simpler
forward scheme is considered when advection is discretised with the
upwind scheme.

e The sink terms in the momentum and turbulent transport equations,
representing e.g. the bottom stress in the momentum equation or the
dissipation rate ¢ and work against stable density gradients in e.g. the
k-equation , are discretised quasi-implicitly to ensure positivity
(Patankar, [1980). The sink terms in all other transport equations will
be taken explicitly for reasons of conservation.

e The time step at which a quantity is evaluated in the discretised equa-
tions, is represented by one of the following superscripts (see also Ta-

ble :

- n: 3-D quantity at the old baroclinic time level t" = nAt

n+1: 3-D quantity at the new baroclinic time level "+ = (n + 1)At
- m: 2-D quantity at the old barotropic time level t™ = nAt+mAT

- m + 1: 2-D quantity at the new barotropic time level t™*1 =
nAt + (m+ 1)Ar

p: horizontal current at the “predicted” time step

The superscript is omitted if no confusion is possible. If multiple super-
scripts appear separated by semicolons, the last superscript represents
the spatial node, the one before last the time level. For example, u™*
denotes the value of u at time level n and node “C”. In case of multiple
subscripts separated by semicolons, the last one(s) is (are) the spatial
index (indices).

e The time step notations are the same in the implicit case except that
there are no intermediate barotropic time steps. However, there is now
a possibility to perform the hydrodynamic solution more than once
every time step. Particularly in case of the use of the semi-implicit free
surface correction method, the accuracy can be enhanced by applying
extra iterations. The values at these extra iteration levels are addressed
with the following superscrips (see also Table :
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- it: quantity at the previous iteration level

- it + 1: quantity at the present iteration level

5.3 Momentum equations

5.3.1 General procedure for the explicit case

The 3-D momentum equations are solved by a predictor-corrector method in
which the sequence of operations for each baroclinic time step is as follows:

1.

Table 5.3: Parameters and variables used in the numerical description.Global and
local FORTRAN names refer to the variables as defined on respectively the global

An initial (predictor) estimate of the currents u?, v? is calculated from
the equations of three-dimensional motion.

. An implicit correction is added to the predicted values for the Coriolis

terms.

. The 2-D depth-integrated equations of continuity and momentum are

solved for (, U and V. This involves M, integrations in time.

. An implicit correction is added for the Coriolis terms at each barotropic

time step.

. The 3-D horizontal current u? and v are corrected yielding u"*! and

v"* by adjusting u? and vP to ensure that the integrated currents

obtained from the 2-D and 3-D momentum equations are identical.

. The transformed and physical vertical current are obtained by solving

and (E73).

and local (parallel) grid.

Symbol Global name Local name  Purpose

N, nc ncloc number of grid cells in the X-direction

N, nr nrloc number of grid cells in the Y-direction

N, nz nz number of grid cells in the vertical direction

hy — delxatc grid spacing in the X-direction at the cell cen-
tre

hs — delyatc grid spacing in the Y-direction at the cell cen-

tre

(Continued)
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Table 5.3: Continued

At

itmam

€imp

delt2d

delt3d

ic3d

nstep

theta_cor

theta_vadv

theta_vdif

maxitsimp

— grid spacing in the vertical direction at the
cell centre (calculated as HAoy,)

delsatc grid spacing in the vertical o-space at the cell
centre

delt2d (barotropic or external) time step for the 2-D
mode equations. In case of an implicit scheme
AT = At.

— (baroclinic or internal) time step used for the
update of 3-D momentum (3-D mode) and all
scalar quantities

ic3d number of 2-D (barotropic) time step within
one 3-D (baroclinic) time step (= At/AT).
In case of an implicit scheme M;=1.

— total number of 3-D time steps used in the
simulation

nstep total number of 2-D time steps used in the
simulation (= M;N;)

theta_cor implicity factor for the Coriolis force with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 0.5.

theta_vadv implicity factor for vertical advection with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 0.501.

theta_vdif implicity factor for vertical diffusion with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 1.

maxitsimp maximum allowed number of outer iterations
for the implicit scheme

dzetaresid_conv dzetaresid_conv convergence limit for the free surface correc-

tion as used in (|5.42)

(Continued)
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Table 5.3: Continued

Qr) — — weight function between the upwind and
Lax-Wendroff (central) fluxes used in the
evaluation of the horizontal (vertical) ad-
vective fluxes. Its value depends on the
value of the advective switches iopt_adv_3D
(3-D currents), iopt.adv 2D (2-D currents),
iopt_adv_scal (scalars) and iopt_adv_turb (tur-
bulent variables) as given by ‘@—5.53.

us — ufvel X-component of the “filtered” advective ve-
locity, used for the advection of scalar quan-
tities

vy — vfvel Y-component of the “filtered” advective ve-
locity, used for the advection of scalar quan-
tities

Us — udfvel value of the depth-integrated current U aver-
aged over one baroclinic time step, as given
by

Vi — vdfvel value of the depth-integrated current V' aver-
aged over one baroclinic time step, as given
by (.22)

5.3.1.1 predictor step
1. Firstly, the following terms are evaluated using values of currents, 7',
S at the old time step (t"):
e the density p from the equation of state (see Section if
iopt_dens>0
e the coefficients of vertical diffusion if iopt_vdif_coef>0
e the baroclinic pressure gradient (see Section if iopt_dens_grad>0
o the coeffficients of horizontal diffusion if iopt_hdif_coef=2 (Smagorin-
sky scheme, see Section
2. The 3-D momentum equations (4.61]) and (4.62)) are integrated in time

at each (internal) grid point (¢,7,k). Their discretised forms without
operator splitting, is given by

~ n;u

uP —u” v

At :fv —Ahl(u )—Ahg(u )— hqfhg

(" ALhYY — 0 ALRS)
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_QaAv(ap) - (1 - ga)Av(un) + Qvav(@p) + (1 - ev)pmv(un)

Au n Aupa o n n n
I_C Sl F1b + F1t g D1 (111) + Dinna(115)

T ook
(5.7)

P =" n n n v
Af = —fu - Ahl(v ) — Ahz(v ) — hquhg
0, Au(57) = (1 = 0,) Au(0™) + 0, Dy (i) + (1 = 0,) Dy (v")
AymALP,
hs poh

(V" ALREY — U ALKS)

+ B+ B Do (751) + Do (755)

(5.8)

-9

where (@?, oP) are the “predicted” currents before implicit Coriolis
correction, f = 2 sin ¢ is the Coriolis frequency, Ay;, A, are the ho-
rizontal and vertical advection operators defined by f and
Duni, Dmw the horizontal and vertical diffusion operators defined by

[57) (0)

3. The predictor currents are obtained by adding an implicit Coriolis cor-

rection:
up — ap fecAt(AUu - f‘gcAtAu)
N 1+ (fO.A1)
0K + [0.ALA)
P — P _
v v 1+ (JO.AL7 (5.9)
where
Au=a"—u", Av=10"—o" (5.10)

For details see Appendix [C|

4. The “predicted” values for the depth-integrated current are obtained
by integrating u? and v? over the vertical

N, N,
UP = ufhiy, VP =) olhi (5.11)
k=1 k=1

The following features are to be noted:

e The forward (Euler) scheme for time discretisation in (5.7)—(5.8)) is
replaced by the operator splitting method, discussed in Section [5.3.3.2]
in case the TVD scheme is applied for the advective terms.



5.3. MOMENTUM EQUATIONS 189

e By default the Coriolis terms are evaluated semi-implicitly (6,=0.5).
The implicity factors for vertical advection 6, and diffusion 6, are set
to respectively 0.5, 0.501 (semi-implicit) and 1 (fully implicit method).
This is further discussed in Section [(£.3.3.11

e The equations are solved at the predictor step with application of sur-
face and bottom boundary conditions, but without open boundary con-
ditions.

5.3.1.2 depth-integrated equations

1. The depth-integrated baroclinic advective and diffusive terms (4.98])—
(4.101) are updated using values of the baroclinic current at the old
time level ¢".

2. The astronomical tidal force is updated at the new time level t"*!

(Section [5.3.14)) if iopt_astro_tide=1.

3. The 2-D continuity equation (4.85) for the surface elevation ¢ and
the depth-integrated momentum equations (4.86|)—(4.87) for U, V are
solved at each (internal) grid point (i,j) for M; = At/At barotropic
time steps

Cm+1 _ Cm B 1

AT " hyhy

(A;(h;Um) + A;(hgvm)> (5.12)

0m+1 —_ygm u ) _ _
+ b2 Um+1 — fvm,u _ Ahl(Um> o AhQ(Um)

At Hmi
T I gHm+1;u
o UmALhYY — Hm+1,u miu AURCY _ AY m+1
h}fhg ( y' 1 v T 2) h}f x(
Hm+1;u b ) Ur
— AUP, + F" 4 grtluphmtl foqu g (P —
p()hzf 1 1 1 bl( b Hniu )
+ D1 (T11)™ + Doz (T2)™ — 04y, + 0D, (5.13)

‘~/m+1 —_ym v ) _ —
+ b2 vm-l—l — _fUm,v o Ahl(vm) o Ahg(Vm)

A7 Hrm
5m;v . ) Herl;v
o ;thv (VmAzhgw o Hm+1’vﬂm’0AZh§) o 9 - Azgm—l—l
1'%2 2

Hm+1;v \Vad

Hn;v

AP, + Fgm + Hmeth;mH + 7o — Ky (vp —

)

pohi
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+ D1 (T21)™ + Doz (Taz) ™ — 0 Ay + 0D, (5.14)

where
(u,v) = (U/H",V/H") (5.15)

are the depth-mean currents and Ay;, D, are the 2-D advective and
diffusion operators defined by (4.90])—(4.93)).

A quasi-implicit formulation is used for the bottom stress in the U-
equation of the form
Up Um—l—l

LA i 516

Tor = P\ U ~ T + Ry I (5.16)

The friction velocities ky; and ks depend on the formulation for the

bottom stress (see equations (4.337])—(4.341)).

no bottom stress ok =k, =0
linear bottom stress : kyy =0, ki = Kun
N2
3-D quadratic law  : k¥ = ki = CY ((u’l})Q + @;}“)2)
1/2
2-D quadratic law  : Kk}, =0, ki, = CY, ((Hm)z + (Um;“)Q)
(5.17)
The bottom drag coefficient C, is calculated from (4.343), giving
-2
or by (4.344))
-2
Citay = 2| I (max(H /(¢4 Emin )| (5.19)

or by interpolating an externally supplied C-node value at the U-node.
Note that the discretisations guarantee that Cgy, remains finite, in case
of a drying condition (i.e. when z, — z).

The bottom stress at the V-node is treated similarly.

. An implicit correction is applied for the Coriolis terms:

FONAT(AVY — fO.ATAU)
1+ (f0.AT)?
FOAT(AUY + fO.ATAV)
1+ (f0.AT)?

Um+1 _ (jm—}—l

ymtt =yl (5.20)

where

AU =0U™ —ym, AV =ymt_ym (5.21)
For details see Appendix [C|
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5. The 2-D open boundary conditions are applied (see Section [5.3.16.1)).

6. After solving (5.12)—(5.14)) M, times, the solutions are averaged over
the baroclinic time step, giving

Mt 1 Mt
Us Ur, Vi=——> V" (5.22)
1 M m=1

m= =

1
=
where M; = At/Ar is the number of barotropic time steps.

5.3.1.3 corrector step

1. Open boundary conditions are applied for the baroclinic part

(6u, ov) = (u"*' =" "+ — (5.23)

2. The predicted values uP, vP of the horizontal current are corrected to
ensure that the depth-integrated currents obtained from the 2-D mode
equations ([5.13)—(5.14)) are identical to the depth-integrated values of

the 3-D current. The corrected values are then given by

n+1

Hrvgp 4 Ul — e
u =

HnJrl;u

(5.24)

L HMP Yy
o Hn+1;v

Un—l—l

(5.25)

3. The “filtered” advective velocities uy and vy, used for the advection of
scalar quantities (see Section , are obtained by adding the depth-
integrated current averaged over the baroclinic time step to the baro-
clinic part of the 3-D corrected current:

Hruyr 4 Uy — UP

n+1l __
uft = Tt (5.26)
H™opP 4V — VP
n+1l __ f
vt = HntT (5.27)

For details of the procedures see Ruddick| (1995).



192 CHAPTER 5. NUMERICAL METHODS

5.3.1.4 vertical current

The transformed vertical current w is obtained by integrating the “baroclinic”
continuity equation (4.102)) from the bottom. Omitting the i- and j-indices
this gives

n+1
w1 =0
1 n u n =1 C vI,N U n —Nn
S = hehe [Ai <h§h3;1’ (up™ — uk“)) + 4, (hlhs;zl’ (o — ”kﬂ))]
1%
" yntte c ( hg;Jlgl;u X yrtle c ( hg;zlw
htlt z Hn—l—l;u h% Yy Hn—i—l;v
wptl = Wit = F, for 2<k<N,
Wiy = 0 (5.28)

The procedure guarantees that wﬁ;}rl =0.

The physical vertical current w is computed at the C-nodes from (4.73)):

n+l;c ntlic  rrne nic
2(H" ez, H™ez)

wnJrl —
k At(Hn;c+Hn+1;c>
1 c uwrpn+liu n n+1;u c vin+lv n n+1;v
+ c1.cnt+lc |:A33 (thB;Jl; uk+1zk+ ) +Ay<h1h3; kaFleJr )]
h1h2h3;k
Az Wi
+ hn—i—l;c (529>
3:k
where
Z’:H-l;c _ Hn—&—l;co_;; — ke (530)

and similar expressions at other nodes or time levels.

5.3.2 General procedure for the implicit case

With the implicit method, there is no longer need to solve the depth-integrated
momentum equations (unless a 2-D grid has been selected). The stringent
CFL stability criterium is relaxed by treating the terms that provoke the
barotropic mode in an implicit manner. Difference with the previous explicit
version is that the surface slope term is taken at the new time level. Ho-
rizontal advection and diffusion are calculated, as before, at the old time
level.

After an explicit “predictor” step, velocities are corrected with the im-
plicit free surface correction in the “corrector” step. In this method, the free
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surface correction follows from the inversion of the elliptic free surface cor-
rection equation obtained from the 2-D continuity equation. Because of the
non-linear dependency of the equations on the free surface height through
the hz-term, an iterative scheme has been implemented in addition.

1. At the first iteration ("' = ¢ and AT = (b + (") Ao

2. The momentum equations are solved at the predictor step using the
latest values for hz and (:

hn—l—l ’Lt~p hn n

hi At

n;u

fv” - Ahl (U”) - .Ahg (u")

v

 hyhy

(u"AYhY" — " ALRS) — 0, A, (G7) — (1 — 0,) Ay (u”)
hgﬂ,it Azcn—i—l,it

hi h
+ FY™ 4 FE 4 Dy (T1) + Dona (1) (5.31)

+0,Dy (W) 4+ (1 — 0,) Dy (u™) —
_ALR,
Poh

hn+1 Zt~p hn n
hz At
(VM ATRE — T ATS) = 0, A () — (1= 0a) Ay (0")

—fu" - Ahl (Un) — .Ahg (Un)

u

~ hhs

n+1,it AV n—+1,it
+0vav<ﬁp) + (1 - ev)Dmv(vn) - ghghn yiw
3 2

AP,
pohs

+ FE o FE D (72)) 4 Donna (72) (5.32)

where the surface slope is taken at the previous iteration level. The
predicted currents (uP, vP) are obtained from (@, o7) after applying the
implicit correction for the Coriolis terms, given by (5.9)—(5.10]).

3. The free surface correction (’ is defined as
C/ — C?’L-I—l,it-f—l . <-7L+1,it (533)

The corrected depth-integrated current is then obtained by adding an
implicit correction term

‘ VAN !
pntlittl Up_HnJrlﬂt,uh_lgg_é (5.34)
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, 1.0 Atg OC
yortLitel Vp—H"H’“’vh—Zga—; (5.35)

where (UP,VP) are the depth integrated values of (u”,v?).

The values for (' follow from inversion of the elliptic equation that
arises by introducing (5.34)—([5.35|) into the 2-D continuity equation

Cn+1,it _Cn C’ 1 ¢ (purTp c (117D
Ay = i (AL (U7 + A (V)

1 AthuganJrl,it;u AthvganJrl,it;v
AC 2 AY / AC 1 AY !
s [ ‘ < hi ZC) 2 < hs i~

(5.36)

Equation (5.36|) can be written as a linear system of equations with
non-zero values only on the diagonal and five sub-diagonals

AijGio1y+ BigGia + CiCly + DigC i + Bl = Fiy - (5.37)
Since the decomposition (5.34)—(5.35) can no longer be used at open

boundaries, U™ or V™! are firstly written as a sum of explicit and
implicit (involving ¢’) terms which are then substituted into the conti-
nuity equation. This is further discussed in Section [5.3.19.1}]

The free surface elevation is updated

LI en it e (5.38)

The total water depth is updated
Hn—‘rl,it—l-l _ Hn+1,it + C/ (539>

The depth-integrated velocity fields are corrected using ([5.34)—(5.35)).

The values of U4+ and V7 L+ gre evaluated at the open boun-
daries by applying the appropriate boundary conditions.

The predicted values u?, v? of the horizontal current are corrected to en-
sure that the depth-integrated currents obtained from equations ([5.34)—
are identical to the depth-integrated values of the 3-D current.
The corrected values are then given by

un—f—l _ Hn-i—l,zt;uup + Un+1,zt+1 —_yr (540)

Hn+1,it+1;u

. Hn-i—l,it;vvp + Vn+1,it+1 —yr
- Hn+Lit+ Lo

ke

(5.41)
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9. A convergence check is performed by comparing the norm of ¢’ with a
threshold value ¢, i.e.

1¢]|oo = max(¢") < €imp (5.42)

A new iteration is started when the criterion is not satisfied, unless
it > it,42 0 Which case no further iterations are taken.

10. After completing the iteration loop, the vertical current is obtained
by integration of the “baroclinic” continuity equation, as described
in Section [5.3.1.4] Since there are no barotropic time steps, one has
up =u" vy = 0"t

At present, no algorithm has been programmed within the COHERENS
source code to solve the linear system, arising from the discretisation of
the 2-D continuity equation. Routines have, however, been provided to
solve (5.37) with the external PETSc library which is activated in the pro-
gram by setting the -DPETSC compiler option. Different algorithms (lin-
ear solvers and preconditioners) are available, whose default values (Incom-
plete Cholesky preconditioner in combination with a GMRES solver) can be
changed by the user. Since the solvers are iterative, a tolerance level has to
be provided.

In summary, application of the implicit scheme involves two iteration
loops. The inner loop solves the linear system for (' and is controlled by the
routines of the PETSc library. The maximum number of iterations of the
outer loop (needed for convergence of the hs-factor) is set by the user with
the parameter maxitsimp.

5.3.3 Advection schemes and time discretisation
5.3.3.1 introduction

The time discretisation of the momentum equations depends on the type of
advection scheme employed for the spatial discretisation of the horizontal and
vertical advection terms. Several schemes are implemented in the program,
selected with the model switches iopt_adv_3D and iopt_adv_2D. They may take
the following values:

0 : horizontal and vertical advection of momentum disabled

1 : upwind scheme for horizontal and vertical advection
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2 : Lax-Wendroff scheme for horizontal, central scheme for vertical advec-

tionl]

3 : TVD (Total Variation Diminishing) scheme using the superbee limiter
as a weighting function between the upwind scheme and either the
Lax-Wendroff scheme in the horizontal or the central scheme in the
vertical

4 : as the previous case now using the monotonic limiter.

The discretisation of the different advection schemes is illustrated with
the following simple example, describing the 1-D advection of a scalar :

op oY

where a is a constant advecting velocity and the equation is spatially inte-
grated for the interval z, < x < x;,. The equation can then be rewritten in

flux form
oy OF
o or
where F' = ay is the advective flux. The discretised form of (5.44), using
forward Euler time integration, is given by

77/}nJrl _ ,¢n N Fi+1 _ E
At Az

0 (5.44)

-0 (5.45)

where At is the time step and Az a uniform grid spacing. The quantities
1 and F; are evaluated on a uniform staggered grid (see Figure with
1-points located halfway between the F-points. Boundary conditions at x,
and x;, are needed to determine the fluxes F; and Fx,;. At interior points,
ie. for 2 <i < N +1, the fluxes F; are then written as a weighting between
the upwind and Lax-Wendroft fluxes F,,,; and Fj,;:

Fy = (1= Qi) Fupi + Qi) Fu (5.46)

where
Fops = %a((l s+ (1— ) (5.47)
Flui = %a((l e+ (1- ) (5.48)

'The “pure” Lax-Wendroff and central schemes have only been implemented for illus-
trative purposes and should be avoided in realistic simulations.
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Figure 5.5: Numerical grid for the 1-D advection problem.

where s; and ¢; are the sign and CFL number of the advecting current

. aAt
s; = Sign(a), ¢ = Ao (5.49)

The weight function 2 depends on the type of advection scheme:

e upwind
Qr)=0 (5.50)
e Lax-Wendroff
Qr) =1 (5.51)
e TVD with superbee limiter
Q(r) = max(0, min(2r, 1), min(r, 2)) (5.52)
e TVD with monotonic limiter
T+ |r|
Qr) = 5.53
"= (5.53)

The argument r of €2 is defined by

(1+5)AF;_1+ (1 —5)AF; 14
2AF;
AE = -Flw;i - Fup;i (554)

r, =

The discretisation scheme for vertical advection is similar, except that
the Lax-Wendroft flux £y, is replaced by the central flux

Fuo = ga(tcn + ) (555)

The discretisation schemes, actually applied in the model, need to take
account of the following additional complexities

e non-uniform grids
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e space and time dependent currents

e grid staggering (advected quantities and advecting currents can, for
example, be located at the same locations)

e extensions to 2-D and 3-D grids

e time integration using operator splitting (see below) to improve the
time accuracy of the TVD scheme

Explicit expressions of each discretisation will be presented below for the
advective terms of all model equations.

The upwind scheme has the interesting property to preserve monotonic-
ity, but has the disadvantage of being only first order accurate. The Lax-
Wendroff scheme, on the other hand, is accurate to second order in space and
time but non-monotone which means that spurious over- and undershootings
are created in regimes of strong gradients. This is clearly illustrated by the
results of the test cases cones and front described in Sections and [23.2]
The TVD scheme has the advantage of combining the monotonicity of the
upwind scheme with the second order accuracy of the Lax-Wendroff scheme.

Horizontal advection is evaluated explicitly to prevent the solution of
large-banded matrix systems. A necessary stability condition for both the
upwind and the Lax-Wendroff scheme is given by the criterion (see
Hirsch, [1990). The restriction to explicit schemes does not apply for the ver-
tical since the discretised equations can be written into a simpler tridiagonal
form (see Section [5.3.18). A semi-implicit scheme in the vertical allows to
replace the Lax-Wendroff by the central scheme which is a monotone scheme
and stable provided that the implicity factor 6, > 0.5.

The aim of the limiter function is to reduce the numerical diffusion due
to the upwind scheme in areas of low gradients and to provide sufficiently
large diffusion in regions of large gradients so that over- and undershooting
due to the non-monotonicity of the Lax-Wendroff scheme are suppressed.
Both the superbee (Roel 1985) as the monotonic limiter are available in the
program. The cones and front test case simulations (see Sections and
showed that the superbee limiter is the least diffusive and is therefore
taken as the default formulation in the program. The spatial discretisation of
the advective terms in the momentum equations and the form of the limiter
function are further discussed in the subsections below.

In the absence of advection or when the upwind or Lax-Wendroff/central
scheme is selected, the momentum equations are solved by forward time-

stepping as given by the time-discretised forms ((5.7)—(5.8) or (5.31)—(5.32).

In case of the TVD scheme, the spatial discretisation of the advective terms
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involves the Lax-Wendroff and central schemes which are both second order
accurate in space. The equations are then integrated in time with the aid
of the “fractional step” or “operator splitting” method as proposed by Ya-
nenko| (1971)). The procedure consists in splitting the time integration into
three fractional steps. During the first and second step only the advection-
diffusion terms in respectively the X- and Y-direction are taken into account.
The vertical advection and diffusion terms and all other terms (Coriolis force,
pressure gradient and tidal force) are included during the third time step.
To preserve the second-order accuracy of the 1-D schemes in the fractional
step approach the method of symmetric splitting (e.g. Hirsch, [1990) is imple-
mented. This means that the previous procedure (“A”-steps) is repeated now
in reverse order (“B”-steps) , i.e. vertical advection/diffusion and other terms
followed by advection-diffusion in the Y-direction, followed by advection-
diffusion in the X-direction. The final “predicted” value of u” or v is then
obtained by taking the average of the values at the end of the A- and B-steps.
The same method is applied for scalar quantities.

The implicity factors 6, and 6, have a range between 0 and 1 where a
0 corresponds to a fully explicit, 1 a fully implicit and 0.5 a semi-implicit
(Crank-Nicholson) method. The schemes are stable provided that 6,6, >
0.5. To retain the same accuracy in time for horizontal as well as vertical
advection the defaults are a semi-implicit option for vertical advection, i.e.
0, = 0.501P] and a fully implicit treatment of vertical diffusion (6, = 1).
Contrary to COHERENS V1, these defaults can be changed by the user and
can take any value between 0 and 1.

For a more detailed account of advection schemes and the time splitting
method see Ruddick| (1995).

2The central scheme is second accurate in time if 6, = 0.5.
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Table 5.4: Overview of the operators used in the numerical discretisations.

Type  Purpose

difference operators

A, difference operator in the X-direction
Ay difference operator in the Y-direction
A, difference operator in the vertical direction

advective operators

At horizontal advection in the X—directio

1 0
Ahl(F) = h1h2h38_&<h2h3ufF)

Ao horizontal advection in the Y-direction?®

1 0
AhQ(F) = hthhgﬁ_&(hlhgva)

A, vertical advection (u, v and scalars)

AF) = 45 (wF)

At horizontal advection in the X-direction (2-D mode)

_ 1 9 (hUF
A’”(F)_hlhza_gl< J] )

Ao horizontal advection in the Y-direction (2-D mode)

_ 1 9 (MVF
AhQ(F)_hlhza_gQ( J7] >

extended advective operators for currents including curvature terms

(Continued)

3Note that (uyf,vf) is replaced by (u,v) if F represents u, v or a turbulent transport
variable (k,e,kl).
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Table 5.4: Continued

Api(u)  extended horizontal advection of u in che X-direction
A () = A () — hf@g—}éf

A}ﬁ(lb) extended horizontal advection of u in the Y-direction
Apz(u) = Apa(u) + %2—2

Api(v)  extended horizontal advection of v in the X-direction

- uv Ohs
-Ahl (U) = -Ahl(U) + @a—gl
extended horizontal advection of v in the Y-direction
~ U2 8}11
Ahg(U) == Ahg('v) — h1h2 8_52

extended horizontal advection of U in the X-direction

— — oV oh
A (U) = A (U) — W h28—&2

extended horizontal advection of U in the Y-direction

= — U 8h1
Ao (U) = Ao (U) + —
() = Ae(U) hihy O,

extended horizontal advection of V in the X-direction

= — uV 8h2
A (V) = A,1(V) + —_—
m(V) = Au(V) hihy O

Ap2(V)

extended horizontal advection of V' in the Y-direction

— _ alU Oh
Ana(V) = Apa(V) — W h2a—£;

diffusion operators

(Continued)
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Table 5.4: Continued

D horizontal diffusion in the X-direction (scalars)
Do () = hlhlghg d&, ( h;:g gz)
Dgno horizontal diffusion in the Y-direction (scalars)
Daslv) = 15 (M e e )

Dini - horizontal diffusion in the X-direction (3-D momentum)

Dy (F) = —= 9 <h2h3 )

hih3hs o0&,
Dine  horizontal diffusion in the Y-direction (3-D momentum)
Dol F) = h2h12h3 aig (h2h3F )
Tij 3-D horizontal shear stress tensor
T1 = —To=vygDr
Ti2 = To1 = vgDs

Do — @i(i)_ﬁi<1)
g hi 06 \hy) hy 08 \ g
v
h

Dg = — )+ ==
5T hy 06, h1 9€, \ By

Dy vertical diffusion (scalars)
1 9 (A OF
st F)=—— T
(F) hs Os ( hs Os )
Do vertical diffusion (momentum)
10 vr oF
Do (F) = —
mv( ) h388<h3 83)

Dpmr1 horizontal diffusion in the X-direction (2-D momentum)

Dom (F) = h11h2 ai (hQF >

Dyne  horizontal diffusion in the Y-direction (2-D momentum)

(Continued)
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Table 5.4: Continued

— 19
Dpn2(F) = 5= (R3F
relF) h%@@( ! )

Tij 2-D horizontal shear stress tensor
T = —Te2="VgDr
Tia = To1 =vuDg

5. — @i(z>_ﬁi(
g hi 06 \hy)  hy 0&

— hy O (a) hy O (
De = ——— | — ]| +—2=2—
° hy 08 \hy ) ' hy0&

)
)

| <1 5| <

>

other operators

P production terms in the scalar transport equations
S sink terms in the scalar transport equations
T production minus sink terms in the scalar transport equa-
tions
T=P-5
Cfl X-corrector term in the scalar transport equations
v 0
cl(y) = ——(hahgu
a(¥) hihahn 851( 2hsuy)
C;; Y-corrector term in the scalar transport equations
v 0
¢l () = ————(hihsv
s2(¢) h1h2h3a€2( 173 f)
Cs3 Z-corrector term in the scalar transport equations

Cs?)<w> = %a_(:
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5.3.3.2 mode splitting scheme for the 3-D momentum equations

The time-discretised form of the u-equation (4.61)) with mode splitting is
given by

e Part A
n+1/3 n nu\2 Aul,c
u —u V)2 AR
AT = —Ahl(u") + (hgf—hgm2 +Dmh1 (VHDT(UH, Un)) (556)
UTZ/B B uf‘“/?’ . (u”+1/3) - uz+l/3vn;quh§w
At h2ita hihy
+ Dmh2(VHDS<uZ+1/37 V™)) (5.57)
~D - n+2/3
A () - (- B AL
0, Dy (@) + (1 = 0,) Do (W's™%) + O (5.58)
e Part B
un+1/3 _on
B A () = (1 ) A (")
0, Dy (7Y + (1 = 0,) Dy (u) + O (5.59)
a0 A
At h2\Tn hihy
+ Do (vg Ds (W™ ™)) (5.60)
b — un+2/3 . V)2 AU RC "
BB — A (UB+2/3) + (l—uw +Douni (VHDT(UB+2/3, ™)
At hihY
(5.61)
e Predictor value !
u’ = 5(&{’; + ) (5.62)
The O;-terms are defined by
, A ™ AP, " .
O, = fo"" — g 6" Sefa Fom oy phintd (5.63)

hy poh

A similar procedure is applied for the v-equation (4.62)).
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(5.65)

(5.66)

(5.67)

(5.68)

e Part A
n+1/3 n n;v,,m AU Uv
'y — v um v A hY
= —Ap (V") = —— 22 + Dyt (v D (u”, v")) (5.64)
At hih3
UZH/S —UZH/?’ A n+1/3> n (u"")2AYhS
= — v _—
At A h{hy
— D2 (v Dr(u™, UTl/g))
b — 3 2/3
A = 0, A() — (L= 6) A7)
+0, Dy () + (1= 0) Dy (03 %) + O
e Part B
vt _yn n+1/3 n
A = A ) = (1= 00) A (")
0, Dy (V) + (1 = 0) Do (v + Oy
n+2/3 n+1/3 n;v v
Vg /3 _ Vg / _ —Ahz(Un+1/3> n (u )QAyhl
At B hihs
- Dth(VHDT<una U%—i_l/g))
Oh s ey R A
At S hih

+ Dyna (v Ds(u”, U?Q/g))

e Predictor value

W=
The Os-terms are defined by
AU n
0y = —fur — g2
hs

1, .
5(“51 + )

AVP, , .
_ Yy - + FZb,TL + F;,n—l—l
pohy

(5.69)

(5.70)

(5.71)

Once uP and o are obtained, an implicit correction is applied as described

in Section B.3.1.11

Important to note again is that, compared to the simpler forward scheme,
the computation using symmetrical operator splitting increases the CPU time
for the circulation module by a factor two, but has the advantage of being
more accurate which is an important property in regions of strong horizontal

and vertical shear.
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5.3.3.3 mode splitting scheme for the 2-D momentum equations

The operator splitting is applied for the 2-D case if the advective terms
are discretised with the TVD scheme (iopt_adv_2D=3). Since the 2-D mode
equations are solved with a much smaller time step than the 3-D mode,
second-order accuracy is of less relevance. Contrary to the 3-D case, the
simpler upwind scheme, using only a forward Euler time integration, can be
recommended for 2-D applications.

The method is analogous to the 3-D case, but given here in detail for
completeness. Firstly, the U-equation is solved as follows:

e Part A
UZH_l/g _ym o Hm;u(gm;u)2Auh§
A = A UM+ i
AT B B hihy
U -Urt g sy UL TR Ay
AT A hihs
+ Do (T Ds (U T2,V ™) - (5.73)
UZH_l _ U174n+2/3 kll)LZ rrm—+1 Va)
mrl — .74
AT + Frm Ua O1 (5:74)
e Part B 113
Ug —-um kl?Q m+1/3 77
Ar + T UB =0, (575)
Ugb-‘r2/3 B Ugb+1/3 _ _Vzh2(Um+1/3) - Ugﬁ—l/?)ﬂm;uAthlw
AT b hihs
+ Doz (WES(U;;HB, V™) (5.76)
ﬁm+1 . Um+2/3 o HmALu (gmsu)2 AURC
B e B — _Ahl(Um+2/3) + §LUhu) z'%2
1792
+ 2_>mh1(ﬁ5T(U§+2/3, V™) (5.77)

e Value at new time step

~ 1 - -
Umntl = 5(U;(L“ + UF* (5.78)
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The O;-terms are defined by

- W gHM e . -
0, = fymu_ g—AZCerl _ . AP, + Flb, " Hm+1,unym+1
hqf p(]hl
P e

A similar procedure is followed for the V-equation (4.87):

e Part A
V/T—H/g _ym B o . ﬂm;vvaghéw
T = —Ahl(v ) - W
+ Dyt (g D (U™, V™)) (5.80)
Vj;n+2/3 . VX@-&-I/?) _ _z (Vm+1/3) N Hm;v(ﬂm;v)2Ath1:
AT h2ltA hYh3

— Do (T Ds (U™, VI3 (5.81)

Vit v, —
Ay T A =0 (5.82)
e Part B 3
Vgt —vm R -
Pt =0 (583)
Vgﬁ,+2/3 B Vl;n-‘rl/3 _ _X (Vm+1/3) N v (Em,v)2Ath
AT h2\"B hYh3

— D2 (@D (U™, VI TY3) (5.84)

T Vm+2/3 AZ h12w

= A, (V™23
A7 Anm( ) hyhy
+ Dot Ga Dr(U™, VE™)) (5.85)
e Value at new time step
- 1 -~ N
Vvt = (Vi vt (5.86)

2
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The O,-terms are defined by

_ . Herl;v Hm+1;v — bm ) o
Oy = —fUm" = T A = = AP+ B R
2 Polty
P = =N
+ 7 — kiy (v — ) — 94 + 3D}y (5.87)

Once U™ and V™! are obtained, an implicit correction is applied as des-

cribed in Section 5.3.1.2

Table 5.5: Definitions of the fluxes used in the numerical discretisations.

Type  Purpose
advective fluxes

I advective flux of a scalar in the X-direction at the U-node
F1 = 'Uﬂ/}

F advective flux of a scalar in the Y-direction at the V-node
F2 = U’QU

F; advective flux of a scalar in the vertical direction at the W-node
F;=wy

iy advective flux of u in the X-direction at the C-node
F11 = uu

Fis advective flux of a v in the Y-direction at the UV-node
F12 = U

5 advective flux of a v in the X-direction at the UV-node
Fyy=uv

Fy advective flux of v in the Y-direction at the C-node
F22 = VvV

Fis advective flux of u in the vertical direction at the UW-node
F13 = wWu

Fys advective flux of v in the vertical direction at the VW-node
F23 = WV

Fu advective flux of U in the X-direction at the C-node
Fy=uU

Fis advective flux of U in the Y-direction at the UV-node
Fiy =00

Foy advective flux of V' in the X-direction at the UV-node
Fo =1V

Foo advective flux of V' in the Y-direction at the C-node
FQQ - EV

(Continued)
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Table 5.5: Continued

diffusive fluxes

Dy diffusive flux of a scalar in the X-direction at the U-node
)
hy 06

D, diffusive flux of a scalar in the Y-direction at the V-node
A OY
27 hy 06

Ds diffusive flux of a scalar in the vertical direction at the W-node

A O
D, =2LZ*"
3 hg 0s

Dy, diffusive flux in the X-direction (u-equation) at the C-node
D1y = homi1 = vpho Dr

D5 diffusive flux in the Y-direction (u-equation) at the UV-node
Dig = hymi2 = vyhi Dg

Doy diffusive flux in the X-direction (v-equation) at the UV-node
Doy = haomo1 = vyheDg

Do diffusive flux in the Y-direction (v-equation) at the C-node
Day = hiT2 = —vghi Dy

Dq3 diffusive flux in the vertical direction (u-equation) at the UW-

d
node I 5u
B h3 ds
Do diffusive flux in the vertical direction (v-equation) at the VW-
node
Dy, = 229
2 h3 0s

Dy, diffusive flux in the X-direction (U-equation) at the C-node
D11 = hoTin = vnha Dy

D1s diffusive flux in the Y-direction (U-equation) at the UV-node
D1g = hiTis = vnhi Ds

Doy diffusive flux in the X-direction (V-equation) at the UV-node
Doy = hoTo1 = VihaDs

Do diffusive flux in the Y-direction (V-equation) at the C-node
Day = hiTas = —vgh1 Dr

(Continued)
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Table 5.5: Continued

5.3.4 Discretisation of 3-D horizontal advection

The four horizontal advective terms in the 3-D momentum equations are
written as the divergence of the horizontal fluxes Fii, Fio, Fo1, Fbs, defined

in Table 5.5

Am(u) = h1;2h3%(h2h3u2) hlhzhg 821 (h2h3F11> (5.88)
Apa(u) = hlijh?)%(hlhguv) hlflhg ai <h1h3F12> (5.89)
An(v) = hléhga%(hmgw) hlhlzhg 8(21 (thgFgl) (5.90)
Apa(v) = hlhlzhg 8‘22 <h1h3v>— hlfizhg 8(22 <h1h3F22> (5.91)

For simplicity, the k-index and time level will be omitted from the discreti-
sation formulae.
Extended forms of the above operators which include the appropriate

curvature term, are defined by (see Table [5.4):

- v?> Oh
Ap(v) = App (u) — tha_gf (5.92)
~ B uwv Ohy
Apz(u) = Apa(u) + Ty 06y (5.93)
(o) — uv_Ohy
Ahl(v) = Ahl(v) —+ h1h2 851 (594)
~ . u2 (9h1
Anz(v) = Apa(v) — hin 06, (5.95)

5.3.4.1 alongstream advection of «

The alongstream advective term in the u-equation (4.61)) is obtained by dif-
ferencing the flux F7; at the U-node

A <u> _ h; mhg nglcl Y] h; ji—1 ]hg'i—l,jFlcl;i—l,j
" By h R

15452545 Y3515

(5.96)

The flux is calculated from

Flcl;z'j = (1 — Q(r ))Fip ij T Q(rgj)ﬂiu;ij (5.97)
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where F7 . and Fy, . are the upwind and Lax-Wendroff fluxes at the C-node:
C 1 c

Fupiy = 5 ((1 + sij)uij + (1 — Sz’j)ui+17j> (5.98)
C 1 c

Fioij = 345 <(1 + cij)u + (1 — Cz’j)um,j) (5.99)

where s;; and ¢;; are the sign and CFL number of the advecting current

ug; At
hC

1349

(5.100)

sij = Sign(ug;), cij =

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment 7 of the weight function is defined by

(1+ sij)AFﬁLj +(1— 5ij>AFic+1,j

ri; = 2AFZ§-
AFZCJ - Fﬁu;ij - qup;z‘j (5.101)
The extended advective term is discretised as
1 u m (UZL)ZAZhCZ
A ()l = A (w)ly — —L—220 (5.102)
hl;ijh’Q;ij

5.3.4.2 cross-stream advection of u

The cross-stream advective term in the u-equation (4.61)) is obtained by dif-
ferencing the flux £} at the U-node

u 133573525
U — 1
Apa(u), e (5.103)

1525772525 352

uv uv uv uv uv uv
. hl;i,j+1h3;i,j+lF12;z',j+1 — hi5;h 'F12;ij

The flux is calculated from

Flay; = <1 - Q(T?jv)> Fopag + Q) Frai (5.104)
where F7, . and Fp7.. are the upwind and Lax-Wendroff fluxes at the UV-
node:

uv 1 uv

Fup;ij = évij <(Oé¢j + sij)ui,]-,l + (ﬁl] — Sij)ui]) (5105)
uv 1 uv

F’lw;ij = 5212-]- <(C¥Z‘j + cij)um_l + (ﬁ,] - Cij)ui]) (5106)
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where w A
v
sij = Sign(vy), ¢y = —}Zu (5.107)
2:ij
hij h3i 1
L R W [ 5.108
g T The 10

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment 7 of the weight function is defined by
(qvij + 5i5) AF )+ (Big — si5) AF,

uv

r

Y 2AF
AFY = Fu.—Fw&. (5.109)
The extended advective term is discretised as
. i U ALRYY.
Ap2(uw)i; = Ana(u)i; + Y = ¥ il (5.110)
h’l;ith;ij

5.3.4.3 cross-stream advection of v

The cross-stream advective term in the v-equation (4.62)) is obtained by dif-
ferencing the flux Fj}" at the V-node

uv uv uv uv uv uv
h2;i+1,jh3;i+1,jF21;i+1,j — hysih 'F21;ij

A (v);; = e (5.111)
! hl;ith;’ijh?);ij
The flux is calculated from
R = (1 - Q(r;;v))pgl;;ij + Q@ (5.112)
where F7. and Fj,7, . are the upwind and Lax-Wendroff fluxes at the UV-
node:
uv 1 uv
Fupiy = 5 ((%‘ + 835 vi-15 + (Bij — 3ij)%‘> (5.113)
uv 1 uv
Fioyg = 34 <(%‘ +¢ij)vier; + (Bi — Cij)%‘) (5.114)
where
. e ugy At
sij = Sign(w;f), ¢y = — (5.115)
hl;ij
hY.;; hi, 1
L S G 5.116
T R T 10
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The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment r of the weight function is defined by
(qij + si) AFY  + (Bij — sig) AFEY

uv

r

ij 2A‘F;1;v
AFY = Fu. —Fw. (5.117)
The extended advective term is discretised as
5 ud v AV R
A (v)fj = An(0)f; + =7 (5.118)
1545245

5.3.4.4 alongstream advection of v

The alongstream advective term in the v-equation (4.62)) is obtained by dif-
ferencing the flux £, at the V-node

B h$...hS

C C C C
F22;z'j - hl;i,jflh3;i,j71F22;i,j71

Apa(v)}y = LS 20 (5.119)
! hl;ijh2;ijh3;ij
The flux is calculated from
F202;ij = <1 - Q(Tfj)> Fucp;ij + Q(Tfj)ﬁﬁj;ij (5.120)
where F . and Fj, . are the upwind and Lax-Wendroff fluxes at the C-node:
C 1 C
Fup;ij = évij ((1 + sij)vij + (1 — s,»j)vi,ﬁ_l) (5121)
C 1 C
Fiwij = 5% ((1 + cij)vig + (1 = Cij)vi,j+1) (5.122)
where s;; and ¢;; are the sign and CFL number of the advecting current
. vg; At
sij = Sign(v;), ¢ =S — (5.123)
hS.;;

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment r of the weight function is defined by
(L4 s5) AFY;_ + (1= si5) AFE;

_ 2,J
N 2AF,
AFzCJ = Flcw;ij - szp;ij (5'124)
The extended advective term is discretised as
i (o o ()P AT
Ana(v)i; = Ana(v)j = — 55— (5.125)

145" 2505
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5.3.5 Discretisation of 2-D horizontal advection

The four horizontal advective terms in the 2-D momentum equations are
written as the divergence of the horizontal fluxes F'11, F'12, Fa1, Foo, defined
in Table [£.5

Au(U) = hllhza%(hgw): hlth%(thn) (5.126)
— 1 0, _ 1 0, —
Apa(U) = Ea—&(hlw)zﬁa—&(hmn) (5.127)
— 1 0 _ 1 0 —
A (V) = mg—fl(hqu) = @a—&(hg&l) (5.128)
— 1 0, _ 1 0, —
AaV) = g (V) = 1= (1 Fn) (5.129)

Extended forms of the above operators which include the appropriate

curvature term, are defined by (see Table :
oV Ohy

A (U) = A (U) — N OE (5.130)
Ano(U) = Ao (U) + ZZ‘;—Z (5.131)
A (V) = A (V) + Zzg—’z (5.132)
Aio(V) = A (V) Zzg—g (5.133)

5.3.5.1 alongstream advection of U

The alongstream advective term in the U-equation (4.86) is obtained by
differencing the flux Fj, at the U-node

_ hS.ii Py — Bt ;v
Ahl(U);L] _ 2;i5+ 11515 . 2,; 1,5% 115i—1,5 (5134>
i P
The flux is calculated from
Fil;ij = <1 - Q<Tfj)>ﬁfm;zj + Q(Tfj)Flcw;ij (5.135)
where Fip;ij and Flcw;ij are the upwind and Lax-Wendroft fluxes at the C-
node:

1—c
F = _uij ((1 + Sij)Uij + (1 — Sij)Ui—I—l,j) (5136)

up;ij 2
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— 1_,
Flw;ij = éuij <(1 + Cz‘j)Uij + (1 - Cij)Ui+1,j) (5137)

where s;; and ¢;; are the sign and CFL number of the advecting current

77C
ug; AT
hC

1349

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_2D. The argu-

ment 7 of the weight function is defined by

(5.138)

sij = Sign(uy;), cij =

(1+ Sij)AF:—l,j +(1— Sij)AF:—i—Lj

7”1404 = —¢
’ 2AF;
The extended advective term is discretised by
— _ DEVUEAYRS ..
An(U) = A (U)yy — =220 (5.140)
hii; P55

5.3.5.2 cross-stream advection of U

The cross-stream advective term in the U-equation (4.86) is obtained by
differencing the flux F, at the U-node

—=uv —=uv

_ hve o R — QYU R
AhQ(U);L _ 1;4,5+1 12,11;]+1u Liig— 12545 (5141)
’ hl;ijh2;ij
The flux is calculated from
anj = (1 - Q(ngv)>ﬁ;;ij + Q(T%U)FZE;Z‘]‘ (5.142)

where Fzz;ij and F;ﬁ;ij are the upwind and Lax-Wendroff fluxes at the UV-
node:
uv 1—uv
Fupii = 505 ((%‘ + 8ij)Uij—1 + (Bij — Sz‘j)Uz‘j> (5.143)
uv 1—uv
P = 3505 ((%’ + ¢ij)Uij—1+ (Bij — Cij)Uij)) (5.144)
where
. v AT
siy = Sign(Vif), ey = (5.145)

2;tg
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h‘gm h%zg 1
=g 5.146
«Q J hgq;j 6J hgg] ( )

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_2D. The argu-
ment r of the weight function is defined by

e (cuj + si)AF ) + (Bij — si)AF, 4y
Y 2AF;
AF = Frpy— Fupi (5.147)

v up;tj

The extended advective term is discretised by

Ao (U )l = An2(U); +Wulj (5.148)

1585 %2549

5.3.5.3 cross-stream advection of V'

The cross-stream advective term in the V-equation (4.87)) is obtained by
differencing the flux Fly, at the V-node

_ hov  Fol o — hi Fy
Am(V)fj _ 2:+1,7% 21, Zerl ]v 215 215g (5149>
hl Byl h2 2yl
The flux is calculated from
F;sz] (1 — Z”))Fzz;ij + Q(T%U)F%;ij (5.150)
where F, upiij and F.. . are the upwind and Lax-Wendroff fluxes at the UV-
node:
T nkad ]'—uv
Fup 2y = iu <(aij + Si_]) i—1,5 (6@] 81,]) 'LJ) (5151)
ks 1—uv
Frogy = 5 (0 +ci)Virg + (B —e)Viy)  (5.152)
where
. ul AT
sy = Sign(wy), ¢ = (5.153)
f h,
hzl) 2] hzl) 30,7—1
Q5 = wo ) 51 = " (5154)
’ hl ¥ ’ hl H¥)
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The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_2D. The argu-

ment r of the weight function is defined by

uv =uv

pw (vij + 85) AF; 1 + (B — i) AF
Y N
The extended advective term is discretised as
¥ . Vi Auhs,
A (V) = A (V) + —L 2220 (5.156)
hl;ijh’2;ij

5.3.5.4 alongstream advection of

The alongstream advective term in the V-equation (4.87) is obtained by
differencing the flux Fy, at the V-node

C —=C

_ he. Foo . —hS. . Fo, .
Ah2(v)% _ Liig— 2245 - 1,:),] 1+ 2254,5—1 (5157)
hi.;ihs.ii
The flux is calculated from
Flag = (1= Q05)) Frpy + Q05 Frog (5.158)
where sznj and Ffw;ij are the upwind and Lax-Wendroft fluxes at the C-
node:
. 1_,
Fupii = 5T ((1 +5i5)Vig + (1 — Sz’j)Vz‘,jH) (5.159)
— 1,
Froij = 3505 ((1 +cij)Vij + (1 — Cij)Vz’,jH) (5.160)

where s;; and ¢;; are the sign and CFL number of the advecting current
EfjAT

hC

2ij

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_2D. The argu-

ment r of the weight function is defined by

sij = Sign(vj;), ¢y = (5.161)

I (1+ Sij)AF;jfl "‘_(1 - Sij)AF:,j+l

" INF,

ij
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C C

The extended advective term is discretised as
— _ al. UYAYhS...
Ao (V)Y = Apa(V)yy — —L 010 (5.163)
hl;ijh2;ij

5.3.6 Integrals of the baroclinic advection terms

The discretised versions of the advective integrals in the 2-D momentum
equations at time step t" are given by

z
u

My = D (At ()i + Az ()i ) i = At (U5 = Aia(U); - (5.164)

k=1

NZ - -
mza;ij = Z(Ahl(v)fjk + Ah2(”)ivjk> hg;z'jk - Ahl(‘/)fj - Ah2<v)§)j (5.165)

k=1

5.3.7 Discretisation of vertical advection

The vertical advection terms in the 3-D momentum equations are written as
the divergence of the of the vertical fluxes Fi3, Fy3, defined in Table [5.5;

10 1 OF
10 1 OF:

5.3.7.1 vertical advection of «

The vertical advective term in the u-equation (4.61)) is obtained by differen-
cing the flux F}%" at the U-node

uw uw
F13;ij,k+1 - Fl?);ijk

Ay ()i, = : (5.168)
h‘3;ijk
The flux is calculated from
i = (1= Q) ) Pt + QU0 Py, (5.169)

where FU% . and F.2t, are the upwind and central fluxes at the UW-node:

1
Fpiin = 5%ijk ((%’k + Siji)Wik-1 + (Bijk — Sijk)“ijk:) (5.170)
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1

uw _ uw
Feeij = Ewijk(aijkuij,k—l + Bijewijk) (5.171)
where
he.. hy
_Q; uw _ ""3igk "B k—1
sijk = Sign(wjy), ok = w0 Bijr = w (5.172)
3ijk 3515k

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment r of the weight function is defined by
(viji + sijk) AFGE ) + (Bije — sije) AFE 44

Tigk = ww
d 2AF
AFZ%J = Fgéu;gk - F?igl;)ijk (5.173)

5.3.7.2 vertical advection of v

The vertical advective term in the v-equation (4.62)) is obtained by differen-
cing the flux F33” at the V-node

Fyiw — Foae
Au(v)ly, = 23%’“; 2k (5.174)
3517k

The flux is calculated from

Pyt = (1= Qi) ) Pt + Qi) e (5.175)
where FU%. and F.%., are the upwind and central fluxes at the VW-node:
1
Fupijk = 5“% <(aijk + 84k )Vijh—1 + (Bijr — sijk)vljk> (5.176)
1
Fé}eq;lfijk = §W§%(@z’jkvi]’,k—1 + Bijkviji) (5.177)
where
hy.,. Ry
sijh = Sign(WiR) . auge = Tl Bk = oo (5.178)
35igk 35ijk

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_3D. The argu-

ment r of the weight function is defined by
(ije + sije) AFG 1+ (Bige — sir) AFS

i - ¢
/ G
AFG = Foie — Fupin (5.179)
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5.3.8 Discretisation of 3-D horizontal diffusion

The four horizontal diffusion terms in the 3-D momentum equations are
written as the divergence of the horizontal fluxes D1, D1o, Doy, Doo, defined
in Table [5.5

Do) = hlhghgai&(hgh?’Tll) hlh%ga%( h?’Dll) (5.180)
Dypa(T12) = h%;2h3%<h§h3712) h2h12h3a%<h1h31)12) (5.181)
Do (721) = hlhlgh?,f%( 2 3721) hlh hs €, (h2h3D 21) (5.182)
Dyna(T22) = @%(hfhgm) h2h12h3 8(22 <h1h3D22) (5.183)

Discretisations for the horizontal diffusion terms in the 3-D momentum
equations are given below. For simplicity, the k-index and time level will be
omitted.

e alongstream diffusion in the u-equation (4.61)) at the U-node

_ P3R5 Dy — Miim1,5050-1, D11
Dy, R A IS 5.184
" <T11> i hlfw(hé‘ Z]>2hg2] ( )

c e Mg e (Wi hii Yi
Dy = Vil |2 (h“] )= (hvj )| sy

1543 2;ij 2;ij 1545

e cross-stream diffusion in the u-equation (4.61)) at the U-node

uv U uv uv LHuv HuUv
D u hl;i,j+1h3;i,j+1Dl2 1,7+1 hl zyh3 2]D12 R 5.186
mh2(7—12>ij - (hu )Qhu hu ( : )
1;e5 2513

uv uv uv hl 2 uv Uij h2 ? uv Uj
Dl?ﬂf:”Hwh“ﬂ[hij <h“]> 2 (h”j )} (5.187)

2513 1535 1;4g 2513

e cross-stream diffusion in the v-equation (4.62) at the V-node

uv U uv uv JuUv uv

D v h2;i+1,jh3;i+1 jD21 ji+1,7 h2 z]h3 K] D21 KA 5.188

mhl <7-21)ij - hY . (hv )th ( : )
IRYANRP R

3319

uv

DY = v [Zi;ﬂ Ay () + wa”A ()] G1s9)

2517 1539 1;4g 2517
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e alongstream diffusion in the v-equation (4.62) at the V-node

c c c c c c
hl;ith;ijD22;ij - hl;i,j—lh3;i,j—1D22;i,j—1
(hv )th .hv

1;i5) 142545713545

Dinna(T22)i; =

c c c hii cf Vij hgl e Uij
D22§ij = VH%’ijhlﬂj |ihc7 ]Ay(hvj > - hc7 ]Am(hu] )]

2;ig Liig Lig 255

5.3.9 Discretisation of 2-D horizontal diffusion

221

(5.190)

(5.191)

The four horizontal diffusion terms in the 2-D momentum equations are
written as the divergence of the horizontal fluxes D11, D12, Da1, Das, defined

in Table [E.5k

_ 1 0 1 0/ —
Dyt (711) = —(h2m7) = —(heD
mi (711) hyh2 OE, (hz ”) hyh2 O€, <h2 ”)
_ 1 9 1 0/ —
D, o(f3) = — (n275) = ~ (mD
mi2(7i2) 12hs O, <h1 12) 2Ty OE (hl 12)
B T A N B Ry
Do (721) - = hlhga_gl(h2 21) - h1h§8_&<h2D 21)
_ 1 9 /., 1 9
Drmna(722) = h%hga_fg<h%7—22> h2hy O <h1D22>

(5.192)
(5.193)
(5.194)

(5.195)

Discretisations for the horizontal diffusion terms in the 2-D momentum

equations are given below.

e alongstream diffusion in the U-equation (4.86|) at the U-node

c N c ¢
= uw h Dy — h2;i—1,jD11;z’—1,j

S 2519
Liag \" 72545
c — c _
DS e e hz;z’j AC Wij \ i Ac Uij
1ij = VHig2 | e Sa\ ju ne —u\ o
1545 217 217 1;4j

e cross-stream diffusion in the U-equation (4.86) at the U-node

w —=uv puww WY
D (T2 = hl;i,j+1D12;i7j+1 hl;ijD12;ij
Liig/ 72515

e —uv UV hi“é A UV Usj hgz | A uv Uij
D12;z’j = VHjj hl;ij [h“;’] Ay (hu] > + hu’vj A:c (hv] )]

2:45 1iij 1345 2:ij

(5.196)

(5.197)

(5.198)

(5.199)
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e cross-stream diffusion in the V-equation (4.87) at the V-node

_uv ’LLU

~ hgg 1 D21 ji+1, héﬂ'z 2133
Dy (Ta1) ) = —H LI 2L 20 72150 (5.200)
! hl K7 <h2 z])
—=uv hqiw Ez thw @z
Dy = T hy, [ A ( L ) + 2N ( 24 )} (5.201)
21 2 h12“i] hl Hy h’l K% h’? K%

e alongstream diffusion in the V-equation (4.87)) at the V-node

c e c e
~ hl 1]D22 Wj h?;i,j—lDQQ;i,j—l

Dyna(T22)i; = (i J2hs (5.202)
1% v
. WS /T h. /T
Doy = i L g (T~ M e (T Y] (5 0
s = M (g o)~y g 20

5.3.10 Integrals of the baroclinic diffusion terms

The discretised versions of the diffusion integrals in the 2-D momentum equa-
tions are given by

N

Dy = D (Dot (71t + Donna(T12) 5 ) Phic = Dot (7l — Do (7521
k=1
(5.204)

Mg

0Dy, = < 1 (T21) 1% + Dmh2<7—22>”k> Rk — 5mh1(ﬁ)§)j — Donn2 (T22)i)

k=1
(5.205)

5.3.11 Discretisation of vertical diffusion

The vertical diffusion terms in the 3-D momentum equations are written as
the divergence of the vertical fluxes D13, Dsg, defined in Table

1 8 VTaU 1 8D13
= 2 (E=) =~ 2
Dmv(u) h3 0s (h3 6’5) h3 0s (5 06)
10 (vpov\ 10Dy
Dpo(v) = T3 05 (h:%) = I O (5.207)

(5.208)
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e The vertical diffusion term in the u-equation (4.61)) is obtained by dif-
ferencing the flux DYy’ at the U-node

uw uw
D13;z’j,k+1 - D13;ijk

3;i5k
The flux is calculated from
VY.
DYy = Ik Ay (5.210)

h3;ijk

e The vertical diffusion term in the v-equation (4.62)) is obtained by dif-
ferencing the flux D35 at the V-node

D — Duw
Do (0, = — 25— (5.211)
3;ijk
The flux is calculated from
v
Dygliir = MAZ%M (5.212)

vw
h3;ijk

5.3.12 Diffusion coefficients for momentum
5.3.12.1 horizontal diffusion coefficients

This section describes the discretisation of the horizontal diffusion coeffi-
cients for the case that a Smagorinsky scheme has been selected. Firstly, the
horizontal tension and shearing are calculated at their “natural” node

Diige = 7 85 () = 72205 (72) 5213
Tiig hii; h3.ij hsag "\
hY%; Uijk h3is Vijk

pw i Auv( tJ ) i AUU< LY ) 5.214

TR b T Ay ! hig " Mg o

The discretised values of the horizontal diffusion coeflicient at the C- and

corner nodes are obtained by applying (4.52)

2 2
V;—I;ijk = thi,z]hg,z]\/(D’(Zj“,zjk> + (Dg‘,wk:> (5215)

2 2
Y = thygjhggj\/ (D) + (D) (5.216)
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Note that the (5.215)) and (5.216|) only require the interpolation of either Dg
at the C-node or Dt at the UV-node but not both.
The 2-D coefficients are obtained by vertical integration

N,

—c _ c c

Viij = E Virijrlsiijn (5.217)
k=1
N,

—uv uUv uv

Ve = E:VH;ijk 3iijk (5.218)
k=1

5.3.12.2 vertical diffusion coefficient

The vertical diffusion coefficient for momentum v is obtained from one of
the available turbulence schemes, described in Section Values are first
stored at the W-nodes and interpolated afterwards at the UW- and VW-
nodes for the calculation of the vertical diffusion fluxes in the momentum
equations. The evaluation of vy only involves algebraic expressions so that
the discretisation procedure is straightforward.

The following comments are to be given

e To avoid spurious numerical oscillations the squared buoyancy fre-
quency N? is spatially discretised by averaging over the neighbouring
cells in the horizontal:

( f;k>2 = |:2wij(Nijk)2 + wi—l,j(Ni—l,jk)2 + wi—i—l,j(Ni—i—l,jk:)Q
wi g1 (Nijo1x)? + wi,j+1(]\7i7j+1,k)2}
|:2w7;j + w1 + Wig1j + w1+ wmﬂ] - (5.219)
where

Nig) = - (5.220)
3;igk

< ~ >2 B ﬁ%u;ijk(j—’icjk - Tzc]k—1) - 52“9";1']'16( ik~ Sicj,k—l)

is the unfiltered value of N? and w;; equals 0 on land and 1 on sea
cells. The expansion coefficients fr and (g are first obtained from the
equation of state at the C-node and then interpolated at the W-nodes.

e The squared shear frequency M? is discretised using

2

(5.221)

( w )2 (ugy, — ufi 1)+ (U — 05 1)
w) =
Y (hsin)?
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Note that the currents are interpolated first at the C-nodes before the
vertical derivative is taken.

e The Richardson number is obtained using its definition Ri = N?/M?.
An upper limit of 1000 is imposed to prevent division by zero if N? >
M?2.

e If the vertical diffusion coefficient is derived from a RANS model (see
Section [£.4.3), its value is not known at the surface and the bottom.
Its evaluation involves the turbulent parameters k, € or [ which are
obtained from algebraic relations or by solving additional transport
equations. This is further discussed in Section [5.6]

5.3.13 Discretisation of the baroclinic pressure gradi-
ent

A known problem is the numerical treatment of the baroclinic pressure gra-
dient for o-coordinate models. Two types of errors may occur

e The two terms on the right hand side of (4.74) may have the same
magnitude and different signs. Significant rounding errors may arise,
especially in case of large bathymetric gradients.

e Violation of the hydrostatic consistency condition which states that a
o-surface immediately below (above) a given o-surface remains below
(above) the given o-surface within a horizontal distance of one grid
interval

o OH
where Ax; is the grid resolution in the X- or Y-direction and Ao the
vertical resolution in o-space.

Az, < Ao (5.222)

For further discussion and examples are found in [Haney (1991); Kliem &
Pietrzak (1999).

Several solutions have been proposed: fourth order (McCalpin| 1994)
or sixth order (Chu & Fan| [1997) discretisations, “z”-level based methods
(Beckmann & Haidvogel, 1993 Stelling & Van Kester} [1994; [Slgrdal, |1997)),
second order method using unequal weighting (Song, 1998)), cubic polyno-
mial interpolation using harmonic averaging (Shchepetkin & McWilliams,
2003). Three algorithms are implemented in the code: the “traditional”
second-order discretisation, a simple z-level method and the Shchepetkin &
McWilliams| (2003)) approach.



226 CHAPTER 5. NUMERICAL METHODS

Before discussing the implemented algorithms, the baroclinic pressure
gradient is rewritten in a more convenient form. In Cartesian coordinates,
the last term on the right of (4.56|) can be written as

¢
o = o) (e
¢
= o o (h e ()
~ g/:(&gi —Bsgi)dz’ (5.223)

where use is made of the Boussinesq approximaion. The last line is obtained
by applying the equation of state, taking account that T represents potential
and not in situ temperature. The latter approximation is at least valid for
non-oceanic waters.

In transformed coordinates, equation ([5.223]) becomes
oT 07 08 07

oT
b e I v ’
F= / 6T(8x1 9z O, g) dz g/ 55(0@ 92 O, g) dz
F'+Ff (5.224)

where a | means a derivative along a surface of constant o.

el
The implemented discretisations for FiI are discussed below. Algorithms

for the salinity and Y-component are obtained in a similar way.

5.3.13.1 second-order method
The scheme uses a straightforward discretisation of ([5.224))

Yij
2hY

1;ig

T u u u
Fisz ﬁT;isz Az (Tisz)h?);isz

Fip1 = ng+

)

gl uw uw w uw u uUw (LW
: ﬁTz]k(hSijA ( zgk) A (T‘ij)Az (zz]k)>

1@]

(5.225)

for N, > k > 2.
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5.3.13.2 z2-level method

The z-level scheme evaluates the horizontal gradient by vertically interpo-
lating the values of T" at the C-node to the vertical level of the U-node (see
Figure [5.6). If z%; denotes the “physical” z-level of the U-node where the
gradient has to be evaluated, the X-component of the gradient is obtained
by vertically interpolating the C-node temperature values in the adjacent
columns (i-1,5) and (7,7) to the vertical level of the U-node. Denoting this
values by respectively sz;k: and T, i+ the pressure gradient is readily evaluated

using (|5.223)):

9i "
F;?Nz 2}1115 ﬁT;isz(T;]k T;]k) 3517 N
i
gz ww
Fzyk 1= Fzyk ’ Bngk( ijk ngk) 3:ijk (5.226)

1y
The following restrictions apply:

e If the vertical position of T}, or T% is below the lowest grid point, its
value is set to Tj;;.

e If the vertical position of T’ k or TH i 1s above the highest grid point,
its value is set to Tj;n,.

Despite its simplicity and the fact that it avoids the truncation problem of the
o-grid, the scheme may produce unrealistic results near the bottom (surface)
or adjacent to a sloping boundary.

5.3.13.3 cube-H method

The “cube-H” algorithm is probably the most robust scheme, but at the
expense of a larger CPU time. The method uses a cubic spline formalism
together with harmonic averaging. Details of the scheme are not given here
but can be found in the paper of Shchepetkin & McWilliams| (2003)).

Omitting the j-index for simplicity, the following procedure is taken

1. Evaluate the integral at the W-nodes

Uic,k 1
FWy, = / : g—jda (5.227)
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Figure 5.6: Illustration of the z-level interpolation scheme. C- and U-nodes
are represented by empty, respectively solid circles.

giving
1

FWin 41 = §ENzh§;iNz (5.228)

1
FWy, = §(Ti,k4 + Toe) (23 — 2ik-1)
1
10
— (d.2f, — dzzic,k—l) (T, —Tip—1 —

1
[(dszk - dzﬂ,k—l) (chk - zz‘c,k—l - E(dzzg,k—l + dzsz))
1

(ATt + AT )|

(5.229)

where 2 < k < N,.
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2. Evaluate the integral at the UW-nodes

Stk Oz
FUy, = / T2 d&, (5.230)
iik afl
giving
FU/L"NZ+1 == 0 (5231)

1
FUy, = §(Tifl,k + T ) (25, — zz‘c—l,k)

1 c c 1 c Cc
~ 10 (doTi, — doTi 1 1) (Zz'k —Zi_1k E(drzz—m + dw%k))
1
— (da %, = oz ) (T = T = 5 (dTimre + diTa) ) |
(5.232)

where 2 < k < N,.

3. The algorithms for the derivatives in ([5.229)) and ([5.232) are given by:

e Vertical derivatives

2(fi,k+l - fzk)(fzk B fi,kfl)

’ Jiks1 — fir—1
d,fir. =0 otherwise

(5.233)

Values at the boundaries are
6 7
d.fin = =(fie— fa) — —=d.fi
fa 5(f2 fi1) B Ji2
6 7
d.fin. = 5(fiNz — fin.—1) — 1—5dzfi,Nz—1 (5.234)

e Horizontal derivatives

2(fiv1k — fie)(fie — ficin)

dz ik —
Ju fivik — ficik
dyfir =0 otherwise

(5.235)
Boundary conditions are

¢t — 1dry, i+1 wet : d,fi =
i —1wet, i+1dry : dyfix=
1 — 1dry, i+1dry @ difu =

(fisr — fir) — %da:fiﬂ,k
(fik — fici) — %dxfiﬂ,k

(5.236)

O vlowto

it (firxrr — fie)(fie — fir—1) >0

if  (figrh — fie)(fie — ficrp) >0



230 CHAPTER 5. NUMERICAL METHODS

4. Evaluate the “temperature Jacobian” at the UW-node

10T 0z 1 0T 0z
I(T,2) = ——| — — ———= 2
( 72) hl 8&1 JaO' hl 80' 861 o (5 37)

giving
ww _ 9i B
ik — hT(FWZk — Fm—l,k - FUzk + FUi,k’—l) (5238)
12
for 2 < k < N,.

5. Evaluate the baroclinic gradient

N.+1
FT— Z u (5.239)
k'=k+1
for 1<k <N, or
ET i = Qh’lll«’l /BT;iNz AJJ (ENz) 3;iNz
A (5210)

for 2 < k < N,.

5.3.14 Tidal force

If the astronomical tidal force is included in the momentum equationg? the
components of the force are updated at each internal (3-D) time step. Tidal
constituents for the harmonic expansion are selected by the user.

The procedure is the following:

e The astronomical Greenwich arguments and nodal factors are updated
using the expressions given in Section if requested. Otherwise

fqn(tm+1) >~ fou(t™)
PRt~ P4 ATwg, (5.241)

where P77 = Vi, (t™) + ugn (t™) and wg, are the frequencies of the tidal
constituent<Fl

4The astronomical tidal force can only be taken into account if a spherical grid is
selected.

5Time is converted to GMT if necessary.

6Equation is applied in double precision arithmetic to avoid truncation errors.
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e The tidal amplitudes A’”’”rl are calculated using (4.232)).
e The components of the tidal force are determined using (4.231) and

(4.230))
tu gZJ 3 u Au A
Pl = 5 [ sm(2¢ g on €0S(Lopsij)

1539

+ sin(207;) AL (A Z A sin(Af; + Prpgig)
n=1
— 2cos(2¢75)AL( Z At c08(AY; + Prngij)

+ (1 + cos(2¢};)) AL (A ZAgn Sin(2A}; + Pangij)

+ sin(2¢}) Ay (¢5;) Z Agp, c08(2A}; + Pangij)

n=1
3
—I—Z(Bcosgb;‘j—f—cos(?)gb;»‘j))A“ (A ZAgnSHl 3N + Pangij)
n=1
3 ak
Z(smgb + sin(3¢7;)) AL fj)ZAg)ncos(Z’)/\%qLPgmj)
n=1
(5.242)
and

= 95 [3 G age A Agn cos(P,
2ij = [ sin(2¢;;) Z on €0S(LPopnsij)

2513 n=1

+ sin 2gz5” A” /\C Z Ay sin( + Pi,.ij)

N1

— 2cos(207;) Ay (d5;) Z Arn cos(A]; + Prpsij)

+ (1 + cos(2¢7;)) Ay (A ZAgn Sin(2A]; + Pangij)

n=1

+ sin(2¢7;) A, ( Z Agp, c08(2A]; + Pangij)
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3
+ 4(3 cos ¢;; + cos(3¢;7)) Ay (AF) Z Azn sin(3A]; + Paniij)

3 . v : v v C v
+ 2 (sin 6 + sin(307)) Ay (65) 5 Ay cos(a, + Pari)|

(5.243)

5.3.15 Surface and bottom boundary conditions

5.3.15.1 surface boundary conditions

Application of the surface boundary conditions (4.266)) and (4.265)) gives
Fizijn.41 =0, Fasjn.41=0 (5.244)

and
Digijna+1 = Tgrijr  DosijNe+1 = Tenuy (5.245)
for respectively the vertical advective and diffusive fluxes of momentum at
the surface.
The components of the surface stress are calculated as function of me-
teorological variables. Different options are available and discussed in Sec-
tion (4.8l

The following steps are taken

e The meteorological data are interpolated at the C-nodes of the model
grid.

e The surface drag coefficient Cys and the components of the surface
stress are determined at the C-nodes.

e The stress components are interpolated at respectively the U- and V-
node.

In the case that the surface drag and exchange are calculated using the
Monin-Obukhov formulation, described in Section [4.8.3] the system of four
equations (4.327)), (4.330)), (4.331) and needs to solved at each model
grid point and time step using a time-consuming iteration procedure. The
following simplifying procedure is taken in the program

e The equations generally depend on five meteorological variables: the
magnitude of the surface wind W, air temperature 7}, sea surface tem-
perature Ty, relative humidity RH and atmospheric pressure P,. The
following simplications are made
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— The atmospheric pressure enters the equations only indirectly to
evaluate the surface humidity and is taken as constant in the equa-
tions, i.e. P, = Prcs.

— Tests showed a larger dependence on the air minus sea tempe-

rature difference AT than on the individual values of T, and T
itself. Letting Ty = T,y one has T, = Typep + AT

The equations now only depend on three variables: W, AT, RH

e The equations are solved for Cys, C., C}, on a “discretised” grid at the
initial time

| 7 min 6w for [ = O, Nu/ ; N”, — ”a$5 " min
— AT T AT — AT,
AT = A in T A f — N+ N. max min
min mé( ) or m O, T; T = 5( )
RH = RH, 0. — RH,ip
RH, ., + nORH for n=0,Ng; Ngr= 5
(5.246)

The following default values are taken

Wiin = 3, Whae =50, W =0.25 (m/s)
ATpin = =5, AT =5, §(AT)=1 (°C)
RH,,;, = 0.5, RH,.. =10, 0R=0.05 (5.247)
The lower limit W,,;,=3 m/s is taken since the equations diverge in the

case of the free-convection limit W — 0 and AT > 0. The computed
values are stored in 3-D arrays.

e The values of the drag and exchange coefficients are then obtained at
a specific time by a tri-linear inperpolation from the discretised values.
Extrapolation is used if necessary.

5.3.15.2 bottom boundary conditions

The bottom boundary condition for vertical advection is the same as the one
applied at surface (see equation (4.345])) so that

Figijn =0, Fygin =0 (5.248)

If the bottom stress is parameterised using the bottom values of the 3-D

current, vertical diffusion is treated implicitly. The flux bottom boundary
conditions (4.340]) are then discretised as

Disij1 = QUKS,EUZT +(1-— Gv)k;f;;uzl (5.249)
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Dazijn = QngL;;vZJ{l + (1 = 0,) ki (5.250)
where 6, is the implicity factor for vertical diffusion and the friction velocities
are defined by

no bottom stress (4.337)) t kpyy = ki =0
linear bottom stress (4.338) : ky,; = kp.i = Fun
. 1/2
3-D quadratic law (4.340)) Dk = Clg ((U?Jl)Q + (UZ{LV)
o . 1/2
Kbii = Clbij ((uijl)z + (Uij1)2>
(5.251)

If the bottom stress is expressed in terms of the depth mean current, the
bottom flux is discretised explicitly

Diziji = kit (5.252)
Dysii1 = kZ;’vZ (5.253)

where the friction velocity is given by ([5.251]) in the absence of a bottom
stress or a linear friction law and

Ky = Cgb;ij<(ﬂ%)2 + (UZ;U)Q)

v v —n;v\2 —n\2 1/2

kpii = Clpij ((uz] ) +(Uz’j) ) (5.254)
The bottom drag coefficient is discretised using ((5.18)-(5.19)) or specified
externally.

5.3.16 Lateral boundary conditions for the 2-D mode
5.3.16.1 open boundary conditions for transports

Open boundary conditions for the 2-D mode are discussed in Section [£.10.1]
The aim is to provide values of U at U- and of V' at V-open boundaries.
External data can be generally expressed as the sum of a non-harmonic and
an harmonic part as given by . The expression is updated at each
time step for the requested locations and variables (U, V or () depending on
the type of conditions, prior to the application of the boundary conditions
itself.

The tidal constituents are selected by the user. In analogy with the
astronomical tide (see Section , the space-independent astronomical
phases are calculated by using either the expressions in Section 4.5 with time
converted to GMT if needed, or the linear approximation

]3lm+l _ V}m-l-l + ulm'i'l ~ ‘/lm + ulm + w0t (5255>
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where w; are the tidal frequencies. Note that (5.255)) is evaluated in double

precision to avoid truncation errors for long integration periods.

The following notations are introduced

e + or F: The upper (lower) sign applies at a western/southern (east-
ern/northern) open boundary.

e X;; 1, The quantity X is evaluated at grid point (¢,j) for a western
and at (i — 1,j) for an eastern boundary.

e Y, .;_1: The quantity YV is evaluated at grid point (4,7) for a southern
and at (7,7 — 1) for a northern boundary.

e S Ve

igr Vg
data).

7; denote externally specified values (harmonic or time series

e s;; equals 1 if s defined at an exterior C-node and 2 if 5 1s defined
at an open boundary U- or V-node.

e The gravity wave speed at the C-node nearest to the U- or V-open
boundary location (,5) is defined by

H¢

i,5:7—1

951, H (5.256)

N C
ii—1,5 i — A/ Gijii—1

e The following auxiliary parameters are defined at U- or V-nodes

" Arcl ; Arcy;
1ye:e—1,5 2;1,5:—1
he he
u o 1yi—1,5 v 2h,5:5—1
= T = T (5.258)
Liig 245

The discretised versions of all available open boundary conditions are
listed below using the same numbering system as in Section [4.10.1}

0. Clamped (see equation (4.357)).
m+1 m

1] )

vt =y (5.259)

1. Zero slope (see equation (4.358))).

m—+1 m u m+1;c m;c
Ut = U Ar(SEOVI + (- V)

J i:i—1,7 i:—1,7
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+ H$+1;uFf;Z+l + Tscl;ij . Tl?lﬁj) (5260)

Vit = V= Ar (00T + (1= 00 )

m+1;v t;m41 c n;u
- Hij FQ;ij — Te245 T Tb2;z’j> (5.261)

Note that the bottom stress components are evaluated at the old time
t".

2. Zero volume flux (see equation (4.359))).

m+1l _ pym+tl m4+1 _ yym+1
Uij - Ui-i—l:i—l,j ) ‘/z'j = ‘/;7]'4_1;]'_1 (5262)

3. Specified elevation (see (equation 4.360))).

m+1 Lym+1
Lym uou UM e
U;" F Sz’jaijcijrij( ”J—ri] - z'j)
u m+1;c m;c
+ AT( z‘j(ecviz:l,j + (1 - 00)‘/1':1‘71,]')
m—+1;u t;m+1 c n;u
+ Hij Fl;ij + To1j — Tbl;ij)
(5.263)
m Lym+1
Vi o= Vi
Lym vov U m e
Vi F Sijaijcijrij@i,j#A — (i)
v m+41;c m;c
— AT (fij(gCUi,j:;—l +(1— 90)‘/1‘,3‘:]‘—1)
m—+1;v tym41 c n;v
- Hij F2;ij — Te2i5 T Tb2;ij)
(5.264)
4. Specified transport (see equation (4.361)).
m+1 e m+1 e
Uij - Uij> V;j - Vij (5.265)

5. Radiation condition using shallow water speed (see equation (4.363])).

m u yFrm—+1
Uij + aijUi+1:i—1,j

Um+1 —
" 1+ o
Vit a;_f,vimﬂ_ .
‘/;;'TH-I — J g i,j+1:g—1 (5266)

1+ ajf)
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6. |Orlanski| (1976) condition (see equation (4.364)).

m+1 m u u u m
U (1 — Opg(ry, wijo T3, SVILE: zg)) Uz’j + OR(Tl;zjy 7245 Tz,ij)UiH:iq,j

(5.267)
‘/;?Hl = (1 - OR(rqu;ij’ Tg;iy T§ZJ)> Vz;n + OR(Tzlj;ijv rg;iﬁ Tg,i])‘/;rgb—i-l =1
(5.268)
The Orlanski weight function is defined by
. r —T2 .
Og(ri,12,73) = mm(max( ,0), 1) if ry # 13
T3 —T2
Ogr(r1,79,73) =0 if ro =73 and r; <17y
Og(ri,m2,13) =1 if ro =rg and r; > 1y
(5.269)
The arguments of the weight functions are defined by
Tﬁz‘j = UiTLl:i—l,ja 7"12L;ij = Uﬁi%ﬂ,ﬁ rg;ij = Uir«nf;:%fzj (5.270)
M = Vigarjo1s T2 = Vigety—ts s = Vigezg—a  (5:271)
7. |Camerlengo & O’Brien| (1980)).
Uptt =0, i U1 >umnt
i+1:4—1,5 i+19—1,7 = Yi42:4-25
Uerl U otherwise (5.272)
Vit = ym if vmo o >V
2,7+1:5—1 2,j+1:7—1 9,J+2:5—2
VmJrl Vi otherwise (5.273)

8. [Flather| (1976) with specified elevation and transport (see equation

([4.360) ).

1
m+1 e u u m—+1 e
Uij = U;F §Sijcij<<z’:i—1,j —G5)
m e 1 m
Vit = Ve T g (Gt — ) (5.274)

9. (1976)) with specified elevation (see equation (4.367)).

. 1
m+1 _ prLym+1 m+1 e
Ui =U + 5523%(@-@‘—1]‘ - ij)
m Lym+1 m
vt =yt g smcw(cz =) (5.275)

where UY, VI are the local solutions obtained from (5.263)) and ((5.264)).
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10. Rged & Smedstad| (1984)) (see equations (4.368)—(|4.369))).

11.

The local solution for ( is determined from

v m v m
AT(hl;i:ifl,j+1‘/;:ifl,j+l —h Vir1j)

Lim+1 L; 1;i:i—1,5 Y ii—1,5
chmtt = ¢l o - ] IS (5.276)
1iai—1,5""2;54:4—1,5

at U-nodes, and

u m u m
AT(hQ;iJrl,j:jflUi+1,j:j71 —h Ui

)

Clomtl — cLim _ 2y 1 Z0d =) (5 977)
M gii—115-1
at V-nodes.
The transports U and V' are obtained using
Ug™t = U™ F (it - Gt (5.278)
Vit = Vet ety — ¢ (5.279)

where the local solutions Ui?mﬂ, U#mﬂ are given by ([5.263)) and
(5.264).

Characteristic method with specified elevation and transport.

Using the notations of Section the transports are calculated as
the average between the incoming (R;) and outgoing (R,) characteristic

1 . .
Ut = SR+ R

m 1 m~+1;v m—+1;v
Vit = SR+ RIS (5.280)

The incoming characteristic R; is defined by equations (4.373|) using
prescribed values for transports and elevations

, 1
m+1u wou N
REG™ = U+ §%Sij( i+ 2- Sz-j)@;iﬂ»
‘ 1
m+1v _ yre v v e v\ ~metl

The outgoing characteristic R; is obtained by solving the discretised

versions of equations (4.371)—(4.372]):

3 u o m—+1;u m;u

2 0;1] 0317

1
U, m+1 m+1u u ~m+1
+ o (Ui Tioa + §Ri;z’j F 2G50 5)



5.3. MOMENTUM EQUATIONS 239

12.

13.

ot
3 v m v m
+ he <i<h1;i:ifl,j+l‘/i:ifl,j+l - hl;i:ifl,j‘/i:ifl,j)
2;1:10—1,7

+ Uirzrz?fl,j(hg;ﬂrlzifl,j - hg;ij))
u m—+1;c m;c m—+1;u t;m+1 c n;u
+AT< ij(acv;:ij_l,j +(1— 90)‘/;:1;1,]') + Hij+ Flt;ij+ + Totyij — Tbl;ij)
(5.282)

and

3 . .
(1+ agr; YRV — R

5% "ij) Yo i
1

v v m—+1 m+1v v ~m+1

+ g (Vi + §Rz’;ij F 2¢7;¢i55-1)
al.
vJ u m u m

+ —hf o <i<h2;i+1,j:jfl ir1gi—1 — Mg Uiy1)

i —

+ ‘/;?:;;—1(h§];i,j+1:j—1 - hiz]))
v m—+1;c m;c m—+1;v tym41 c n;v
_AT< ij(eCUi,j:;fl + (1 - QC)Ui,j:jfl) - Hij+ FZt;ij+ T 1s2sij + 7—b2;ij>
(5.283)

Note that the propagation term is integrated fully implicitly and U,g““l,

VZ-;.”“ have been eliminated in (5.282)(5.283) by substituting for R"*'"

and R:-nﬂw from .

Characteristic method with specified elevation.
The method is as previous with Uf;, V¢ replaced by the local solutions

U™ Vi from (5.263) and (5.264).

Characteristic method using zero normal gradient.

The method is the same as previous except that the incoming character-
istics are obtained as solutions of the discretised versions of equations

[E375)- ([E370):

m+Liu _ pmiu
Rigyy = Rigj
U
i Qij :E(hv m v m )
he 1ya:i—1,54+1 Y ai—1,54+1 1yi:i—1,5 Vii—1,5
2;4:1—1,7

cim U u
+ Ui:i—l,j(hQ;iJrl:ifl,j - h2;ij>>

+ AT( OV (L= 0V ) + HE TR rl s — ﬂ;@)

i i:i—1,7 i:—1,7 135
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(5.284)
and
Ry = Ry
a'U
_ hfwl]]_l (i(hg;z‘ﬂ,j;jﬂ g1 — Ny Ul )

‘/;CJ”]’L 1(h11) 0,7 +1:5—1 h11] Z])>
_A7_< (9 Uzn;§11+( -0 )UZ; 1) Hm‘i‘lUF;ZH‘l_ 3223+Tbr;1;j>
(5.285)

5.3.16.2 open boundary conditions for 2-D advective and diffusive
fluxes

Two schemes are available to evaluate the cross-stream advective fluxes in the
U-equation at Y-open boundaries or in the V-equation at X-open boundaries

1. The first one uses a zero gradient condition

uv —_uUv _uv _uv

F12;ij = Fl?;i,j—f—l:j—l or F21;ij = F21;i+1:i—1,j (5.286)
which is the same as before.

2. The flux is determined using the upwind scheme (where possible). This
means that
v 1—uv
Flragg = 50 ((1 +55)Ui g1+ (1= Sz’j)Ui,j:j—1> or
uv 1—uv
Foij = 50 ((1 + 5ij) Vieiy + (1 = Sz‘sz‘:z’—Lj) (5.287)

where s;; = 1 in case of an inflow condition and either

i,7-1:7) is a U-open boundary or (i-1:7,5) is a V-open boundary

land or coastal) U-node

(i

e (i-1,5) is a closed (land or coastal) V-node or (i,j-1) is a closed
(
(¢,

j) is a closed V-node or (7,7) is a closed U-node.
In all other cases, s;; = —1.

The cross-stream diffusive fluxes in the U-equation are avaluated as fol-
lows
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e If cither (7,j-1:7) is a U-open boundary, or (i-1,7) is a closed (land or
coastal) V-node, or (4,7) is a closed V-node, the flux is calculated by
equation ([5.199)) for an internal node.

e Otherwise, if (i,j-1:j) is an interior U-node, a zero gradient condition
is used

—=uv

Digyy = b?s;i,j+1sj—1 (5.288)

e Otherwise, the flux is set to zero, i.e.

—=Uuv

Digs; =0 (5.289)

Likewise, at the fluxes in the V-equation are given by

e If either (i-1:4,7) is a V-open boundary, or (i,j-1) is a closed (land or
coastal) U-node, or (4,7) is a closed U-node, the flux is calculated by
equation ([5.201f) for an internal node.

e Otherwise, if (i-1:7,5) is an interior V-node, a zero gradient condition
is used

—=uv —=uv

Dorij = Dorijisrj (5.290)

e Otherwise, the flux is set to zero, i.e.
—=Uuv

Dy =0 (5.291)

An optional relaxation scheme has been implemented which reduces the
impact of advection within a user-defined distance from the open boundaries.
In that case, the advective terms are multiplied by the relaxation factor

o = min(d/dpmaz, 1) (5.292)

where d is the distance to the nearest open boundary. Experiments showed
that, with an appropriate choice of the maximum relaxation distance d,,qz,
instabilities, due to inaccuracies at the open boundaries, are prevented to
propagate into the domain. The scheme has shown to be useful, in particular,
to reduce instabilities, observed near ragged open boundaries.

5.3.16.3 boundary conditions at closed lateral boundaries

Following (4.392))—(4.393) one has
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at coastal boundaries.
Likewise all fluxes for the cross-advective and diffusive terms are set to
zero at closed Y- or X-node boundaries:

=Uuv —=uv

Fly;; =00, Dy, =00, Fy,;; =00, Dy, =00 (5.294)

where a Y- or X-node grid point is called “closed” if one of the neighbouring
V- or U-node points in the X- or Y-direction is a closed velocity node.

5.3.17 Lateral boundary conditions for the 3-D cur-
rents

5.3.17.1 open boundary conditions for horizontal 3-D currents

Open boundary conditions for the 3-D mode are discussed in Section [4.10.2.1|
The aim is to provide values of u at U- and of v at V-open boundaries for each
vertical level. The depth-mean parts of the currents are already determined
by the 2-D open boundary conditions which means than only the baroclinic
parts du and dv need to be specified.

The discretised versions of all open available open boundary conditions
are listed below using the same numbering system as in Section [£.10.2.1]

0. Zero gradient condition (see equation (4.377)).

n+1;u

I s
n+l 254+1:4—1,5""35i4+1:0— 1,5k n+1u
5uijk = PR 5ui+1:i717jk (5.295)
25473515k
B thrl;v
n+l L;e,j+1:9—1""353,54+1:5—1,k ¢ n+1lw
6vijk - By hn+1;v 5Ui7j+1zj—17k (5‘296>
153573515k

This is the default condition.
1. Specified external profile (see equation (4.378))).

Suftt = dugy, (5.297)
Suptt = ouy, (5.298)
(5.299)

2. Second order gradient condition (see equation (4.379)))

u U c c
h2;’i+1:i71 h’3;i+1:i71 hl;i:ifl h2;i:i71
du; = 1+ OUit1:i-1

u u C C
h2;i h3;i hl;i+1:i72 h2;i+1:i72
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u u Cc C
h2;i+2:i72 h3;i+2:if2 hl;mel h2;i:i71

(5U2‘+2n‘_2 (5300)

u u C C
h2;i hS;i hl;i+1:i—2 h?;i+1:i—2
v v C Cc
Su. — M1 P81 14 hSji—1 iy S0
Y hy hs h L
1 333 25J41:5 =2 P41 -2

RO . RY e he
1;5+2:9—2 "°3;542:5-2 2;5:7—1 1;5:9—1
— (5@j+2:j,2 (5301)

v v C C
hl;j h3;j h2;j+1:j—2 hl;j+1:j—2
(5.302)
3. Local solution
nt+liue ntl  pnu n
h3;ik ougy, hS;ikéuik — r(gmTEe (1 — g\ 5.303)
hn—i—l;u - f Uik ( C)Uik: ( :
3;ik
Fbm Duw — Duw
+ Fb;n I e S . 13;i4,k+1 13;ik To1yi — Tsly
1i+19—1.k Hn+1;u hY . Hn-{—l;u
i+1:0—1 31 i
1;v n+1;c n;v n;c
RIEEVSyERe Rt 5y
3;5k jk 3k~ gk n+l;c n;c
ST = —f(Ocufy = (1 — 0 )ujy, (5.304)
35k
Fbm Dyw — Dvw
Fb;n T 2411k 23;5,k+1 23;5k Tv2;5 — Ts2;5
+ 2;5+1:5—1.k HnJrl;v + hY HnJrl;v
Jj+1lj—1 35k j

The diffusive fluxes are obtained from ([5.210), (5.212)) using the condi-

tion ([5.245)) at the surface and the bottom stress formulations given in

Section £.3.15.21

4. Radiation condition using the baroclinic wave speed (see equation (4.382])).

Ouie = (1 = wig)Sufjy, + wiiouf 1 (5.305)
51}?]‘21 = (1 o wfjk)&v:;k + wfjkévz‘ﬁjﬁrl;jfl’k (5306)

The weight factors are given by

u o :l: RAt c Hn+1;c
Wi = he Givi—1,5414:i-1,5
Liisi—1,j
RAt
v o c n+1;c
Wi = T Yiji—141i 551 (5.307)
24,5:—1

where R is the prescribed ratio of the baroclinic to surface gravity wave
speed. Default value is 0.03.
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5. Orlanski condition (see equation (4.383))).

In analogy with the 2-D case one has

n+l __ u u u n u u u n
5uijk = <1_OR<7"1;ijka T'9:05ks Tg;ijk) 5uijk+OR(rl;ijk7 T9.0jk> T3;ijk>5ui+1:i71,jk

(5.308)
n+1l __ v v v n v v v n
5Uijk = (]‘_OR(Tl;i]’k7 T2k TS;ijk)) 5vijk+OR(r1;ijk7 T2k r3;ijk)6vi,j+1:jfl,k
(5.309)
where the Orlanski function Og is defined by ([5.269) and
u _ n u _ n—1 u _ n—1
Mijk = 5ui+1:i—1,jk y o Tk = 5ui+1:i71,jk y o T3k = 5ui+2:i72,jk
(5.310)
v o n v o n—1 v o n—1
Tk = 6vi,j+1:j71,k v Toyjle = 5vi,j+1:j—1,k7 T35k = 5Uz‘,j+2:j—2,k
311)

Once the baroclinic and mean components are known, the full 3-D cur-
rents are determined by adding the two components

n+l _ rrn+l n+1;c n+1 n+l _ y/n+l n+1;c n+1
wgr = Ui THE G 0wy s i = Vi g+ ovgy (5.312)

5.3.17.2 open boundary conditions for the advective and diffusive
fluxes of the 3-D currents

The formulations are identical to the one given in Section [5.3.16.2] except
that the fluxes now include an additional k-index.

5.3.17.3 boundary conditions for the 3-D mode at closed lateral
boundaries

The formulations are identical to the one given in Section [5.3.16.3], except
that the fluxes now include an additional k-index. They are given for com-
pleteness.

Following (4.392))—(4.393)) one has
Uik = 0, Vijk = 0 (5313)

at coastal boundaries.
Likewise all fluxes for the cross-advective and diffusive terms are set to
zero at closed Y- or X-node boundaries:

fLQka =0.0, g;ijk =0.0, 2u1v2jk =0.0, ;f;ijk =0.0 (5-314>
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5.3.18 Solution of the discretised equations for mo-
mentum

In the case of a 3-D current the discretised transport equations reduce to a
system of linear equations of the form

Bipn X550+ CipnXl5® = D

ApXP .+ BpX[5Y + CipX]9%, = Dign(X°)  (5.315)

AN XTN. 1+ Byn. XDV = Djjn.(X)

i1 (Xold)

where X4 and X" are the values of the values of the current (u or v) at
the “old” and “new” time step. Equations form a tridiagonal matrix
system in the vertical, which has to be solved at each horizontal grid point
(1,)-

Omitting the ¢ and j indices for simplicity, the elements A, By and Cj
can be written as the sum of different components, each representing partic-
ular term(s) in the corresponding momentum equation. Explicit expressions
are given below for the update of u at the predictor step without opera-

tor splitting, as given by equation (5.7) or (5.31)) so that X°¢ = y" and
X" =P, They are easily extended to the case for v-equation.

When operator splitting is used, four of the six steps are explicit inte-
grations in which case the solution is straigtforward. The two steps (5.58),
(5.59) involving implicit terms are treated in a similar way.

The discretised 2-D equations for transports are written as

Bi; X[ = Dy X7 (5.316)

The composition of the B- and D-matrices is readily obtained from the dis-
cretisation formulae in the preceding sections and is not given here. The

solution of ([5.316)) is straightforward.

5.3.18.1 composition of the tridiagonal matrix

1. Time derivative.

The contribution of the time derivative is given by
Al =0, Bj=1, C.=0, D,=u} (5.317)
where 1 < k < N,.

2. Vertical advection.
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The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

Ay = —0uc; (o + fi)

By~ = —0.c; (B — fr)

- = 0

D = (1= 6u)cp ((on+ fiuwiy + (B — f)uf)  (5318)

where 2 < k < N,

- Atw}éw uw
¢ = o, fr = (1 — Q(ry ))sk (5.319)

and @ijk, Bijk, Sijk, Ti;x are defined by (5.172)) and ([5.173)).

The terms arising from the flux above the k-level, are

AZ* =0
By = bucy (s + fia)
OZ+ = QaC:(BkH - fk+1)
Dyt = —(1—=0,)cf ((Oék+1 + frer)ug + (B — fk+1)UZ+1>
(5.320)
where 1 < k < N, — 1 and
Atw
+ k+1
S —h 5.321
Ck 2hg;k ( )

. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

AtvH®
AZ_ = Yy, j;fu

h3;kh3;k

AtV
Bg_ = Viu 7;;];

h3;kh’3;k
cl =0

Atv®

d_ Tk n n
R e 70 Y SN CE )

U huw
hS;khS;k
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where 2 < k < N,.

The terms taken from the flux above the k-level, are

Al = 0
AtV
BZ+ = Viu quu+1
h3;kh3;k+1
ot Atvrg
k - vhu huw
3;k"V3;k+1
AtvE®
d T;k+1 n n
Dk+ = (1_911)W(Uk+1—uk) (5323)
3;k"3;k+1

where 1 < k< N, — 1.
4. Other explicit terms.
All other terms are explicit. Their contributions can be written as
A, = B,=C;=0
Df = At (Ol;k — A (0)? = Ao ()} + Dyt (711) " + Dmh2(7_12)z;u>
(5.324)
with Oy, defined by (5.63]).

5. Surface boundary conditions.

The contributions arising from the surface boundary conditions ([5.244))
for advection and ([5.245)) for diffusion are added to the highest level:

ar a4+ _ 04 e+
Ay = By =Cy =D =0

Ay, = By =Cy =0
At
d s

6. Bottom boundary conditions.

The contributions arising from the bottom boundary conditions (}5.248|)
for advection are added to the lowest level:

A = B = =D =0 (5.326)

The bottom contributions for vertical diffusion depends on whether the
bottom stress is expressed as function of the bottom current (equation
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(5.249))
Atky Atkyuf
A=t =0, BF=¢""t DI = _(1-6,)" 2"
hy hy
3;1 3;1
(5.327)
or the depth mean current (equation ([5.252))
Atkyu”
A = B> ¢ =0, Db =— hub“ (5.328)
3;1

where the friction velocity is calculated using ([5.251)) or ([5.254]).

5.3.18.2 solution of tridiagonal systems

Tridiagonal matrix systems of the form ([5.315)) are solved using the algorithm,
described in [Press et al.| (1992):

b = Bi, X7 =D/
Y = Ck1/Br-1, B = B — Awve, Xi = (D — A Xi_1)/ B
for k=2,--- N,
X - X,

X = Xf— e XpY for k=N, —1,---,1 (5.329)

5.3.19 Elliptic equation for the free surface correction

When the implicit method for the surface slope term in the momentum equa-
tions is taken, an elliptic equation is obtained for the free surface correction
¢’. The discretised form of this equation is written in the form (5.37). The
matrices A to G are evaluated in two phases:

1. The transports are first taken at interior wet points only and set to
zero at solid and open boundaries.

2. The explicit and implicit terms arising by applying the open boundary
condition are added.

5.3.19.1 interior terms

Defining
it P2 it Mg
ity V23 it "L
p% — Atu;’}g;‘jHZ- ! uh“ I p;’j = Atufjg;’jHZ} ’ vhv—J (5.330)
1545 2515
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where ;1 equals 1 at wet interior nodes and 0 at solid or open boundary
velocity nodes, the coefficients of the elliptic matrix equation (5.37)) become

_ u _ v _ v _ u
Aij = —Pij> Bij = —Pij; Dz‘j = Dijt1> Ei; = —Pit1;
he  he .
_ 1335772545 [ U v v
Cij = AL t Piv1; TPy T Pij T D
C C
_ 1525°72525 1 n-+1,:t u u P u u TP
Fy; = At ( ij —( ) — 2;i+1,jﬂi+1,jUz‘+1,j + hQ;ij:uijUij
v v P v v P
Rt gea Vi + g Vi
(5.331)

5.3.19.2 open boundary terms

From the discetised forms of the open boundary conditions additional terms
are added to the coefficient matrices. They are described below for each
type of open boundary condition using the notations introduced in Sec-
tion [5.3.16.1] The following definitions are made in addition

U
Hn—i—l,it;u h2;ij

my; = Atgl 1T Ju
1;i+1:9—1,7
v
+1,it; 1;i5
m;}j - Atgf,jﬂ:j—lesz;jzlv—” (5.332)
2;i,j+1:5—1
1 1
T T B E T e 5.333
Y14 1bakry T Y T+ Lsagry ( )
+1,it; tin+1 ;
+1,it; tin+1 ;
ij = A= ZJjUifj:jfl +Hz'nj Z UF2;?j "‘7'302;1‘]' - 7'1?2,1;])
(5.334)
0. Clamped
Fiiij = Fru1j+hy,;Un
E,jijfl = Fi,j:jflihzl);ij‘/i? (5335)

1. Zero slope

Fiioig = Fuy T hy (U +O)
Fijij—1 Fjj—1 £ h,(VE +OF) (5.336)

1ij



250

2. Zero volume flux

u
Fi:i—l,j -Fzz 1,7 :thQZJUH_lz 1,5
P
Fijij—1 Fijjo1 £ 035 Viia
u u
Cii-1 Cii1j — 2:15 M35
Cijij—1 = Cijy—1 — higmg;
West Eij = Eij + hy;;m
u
East Aisr; =Ais; + h2 Ly
South D;; D” + h1 i
v
3. Specified elevation
Lin+1yit Lin (TR n+1,it
Uij - Uij + Sl]aljc iTi (Ci:i—l,j -
Lin+1,it _ Lin v ov v n+1,it e v
Vz‘j = ‘/ij + 5”%3%7"14 (Ci,j:j—l - C@]) + Oij
Lin+1,it
E:ifl,j E —1,7 + h2 ”U
v Lin+1,it
Fijij—1 Fjij—1 £ hig Vi
u u U
Ci:ifl,j C” 1,j + h2 z]smauc 7“
J— v v v
Ci,jij—l - CZ] g—1 + hl Z]SZ]O[Z]CUT’
4. Specified transport
u e
E:i—l,j Ez 1,5 + h2 RY Y]
e
E,j:jfl E]] 1 :i:hl Zj‘/;j
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5. Radiation condition using shallow water speed

Fii1;

E,j:j—l

Un+a Uz+lz 1,9

5+ 0%

Fzz 1]:i:h22] 1+Oé»~
Vi +af VP

ij " i,7+1:5—1

F, i1 £h

L
” 1+ aj

(5.337)

(5.338)

(5.339)

(5.340)

(5.341)

(5.342)

(5.343)

(5.344)
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hy. .m¥ ot

N 17.7 : 1,) 1 _|_—a11j]
C - C hiimi i (5.345)
ijii—1 = Ligg—1— —F o .
1+ o
West Ej=FE;+ 2y g g
1+ o
East A=A+ 2315 "ig g
H H 1+ af;
hf.ijmfja%
South Dij = Dy + —2- 1
1+ af
h71) mY.av.
NOl"th N B’L L = BZ - + v 1] 1) 5346
7 a1 1 + ( )

6. |Orlanski (1976) condition

Fiicij = Fiio1j % hyy (1 - OR)UZ} + ORUﬁLFLj)
Fig = Fugor £ 0 (1 OV +0aVii, ) (5.347)

where the Orlanski weight function is defined by (5.269)—(5.271)) at U-
and V-nodes.

7. |Camerlengo & O’Brien| (1980)

_ = .. X u n : n n—1
E:'L—L] — L1y + h2;ijUi+l:i—1,j if Ui-‘,—l;i_l,j Z Ui+2:i—2,j (5 348)
Fiivj = Fuio1j £ hy; UL otherwise

L — F. .. v n 3 n n—1
Figgo1 = Fijga £ 03V 3 Vi 2 Vi, (5.349)

— v n . .
Fijj1 = Fijj1 £ hi; V] otherwise

8. (1976) with specified elevation and transport

1 )
_ u e u u (ntlat e
Fiicij = Fiu1j % hyy, (Uij + —Sijcij(Ci:i—l,j - 1]))

2
v e 1 v n-+1,it e
Fijj-1 = E,j:j—lihl;ij(‘/ijq:§Sijcij(ci,jij*1_ z‘j)> (5.350)
1 u u u
Ciic1y; = Ci:ifl,j+§h2;ij5ijcij

1 v v v
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9. [Flather (1976 with specified elevation

. 1
u Lin+1,it u n 1,3t
Fii1; = Fi- 1.]:l:h27,_]<U - :|:§Sijcm zz+1,] )
1
Lin+1,it v +1 it
Fi,j:j—l = E]J 1:|:h12]<v :Fﬁsijcw i,j:i—1 >
(5.352)

where the local solutions (UZm+1it y/LintLit) are determined by

1 uw U
Clii-1, Ciirg + hayjsi ZJ(Q +agr;)
7) 1 v LU
Cijj—1 = Cijj1+hiys 13(5 + agir;) (5.353)
10. |[Rged & Smedstad| (1984))
C'L‘;n-&-l,it _ CL,n_ At(hqu;i:ifl,jJrl i?ifl,jJrl h’quzz 1,5 ’L’L 1,])
U N M1, 150015
CLmtlit L _ At 41 51Ul g1 = M i Ulljioa)
Y v h(lj,u]] lhgzj] 1

(5.354)

. u Lin+1,it u U n+1,it Lin+1,it
Fiicig = Py £ hyy, iij (U = Sy z‘j(Cz‘:z‘—l,j — Gy ))
Fijj1 = Figjath

Lint1,it 11,4t Lint1,it
lz]<V e — s Cz](cn' ! _C " Z))

ij
(5.355)
C’i:ifl,j Cz w—1,7 + h2 B 1,]( + SZ]OZUT' )
Ci,jij—l = CZ] g—1 + hl %) 2](1 + Sz]az] ) (5356)
11. Characteristic method with specified elevation and transport
1 y
n+1,it;u e e u n+1;¢
Rz:; " Uij 5313% (ng +(2 - Sij)Ci:iJr—l,;)
1 .
n—+1,it;v e v o e v n+1,it
R”J; " V;j + 5%’%( i T (2 - Sij)Q,;;rjq) (5.357)

3
(1 + —Oju-?“i )Rn—l—l Jitu Rnu

9 i 0;1] 0;1]
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+au7,u<U+1Z 1]_,_ Rn+12tu:':2c <n+lzt)

7 ;1) i:i—1,7
al.
) v n v
+ he <j:(h1;i:i—1,j+1 2—1,7+1 hlzz 1,9 Vii— 1,])
2;01i—1,7
n;c U u
Uzz 1]( 2;i+10—1,5 27,J)> + O (5358)

and

3
(1+ Oév y)Rn—‘rlztv an

2 051]) 0,17
n+1,it;v n—+1,it
—|—Oé7” (‘/zg—i-l] 1+ Rzzy :F2z]<j] 1)
v
oy u w n
Tl he . ( (h2 ity — 1U+1]J 1 h2;z‘,jzj—1 i,j:j—l)
1;4,5:7—1
n;c v v v
+ Vigi- i Liij+1:—1 — 1;ij)> + Oj; (5.359)

1 n U n ,005U
Fii; = Fuj=* hgm<R FLit —I—Rﬂt)

(R 0;1]

1517 0;1]

Fijj1 = Fijja+ hlzJ<Rw_‘Litv Rn—H’ZtU) (5-360)

u 1 u ,,u u
Cz‘:i—l,j = C”_ 4h2 i5 55 z](2_ S; )<1+ 2al]TlJ U)
1
+ hy.aisciris Bl — Sogiris Blimis (5.361)

2 gyt

v 'U v 1 v v v
Cijj—1 = Cijj1— 4h1 SuCh(2 = sl ) (1 + sadiriBi)

2
+ hi o0cm 8 — %ozwrl] vmy; (5.362)
West : B =E;+ 1h21 QT Bigmis
2 J g ] J
East : A, =A4,41;+ h22] i Bimi;
South D;; = D;j + 2h1 i Qi T 055

North :  Bij1 =B 1+ hw vBem (5.363)

v
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12. Characteristic method with specified elevation
The discretisations are the same as in the previous case with (Uf,V,

1777 1) )
(]'L77L+1 1 ‘ 7L77l+1711
( ' (A Y] )'

replaced by (U;

13. Characteristic method using zero normal gradient

The discretisations are the same as in the previous case with (

Ry 58]
defined by
n+1litiu _ pnju
R = R,;;
u
_ Qg :E(hv v By v )
he Liasi—1,5+1 Vii—1,5+1 lLiia—1,5 Vii—1,5
2;0:1—1,7
cm u u U
+ Ui:i—l,j(hQ;iJrl:ifl,j - h2;ij>> + Oij (5.364)

and

Rn+1,it;v o Rn;v

58] (R
ab.
] u n u n
- he <i<h2;i+1,j:jflUi+1,j:j71 - h2;i,j:j71Ui,j:jfl)
1;4,5:5—1
c;m v v v
+ ‘/i,j:j—l(hl;z‘,j-i-l:j—l - hl;ij)) + Oz‘j (5365>

5.4 Drying/wetting and inundation schemes

5.4.1 Drying and wetting algorithm

The drying and flooding algorithm implemented in COHERENS closely fol-
lows the version used in the GETM model (Burchard & Bolding, [2002)) and
consists of the following steps.

1. The advective, horizontal diffusion, Coriolis, curvature and baroclinic
pressure gradient terms in the 2-D and 3-D momentum equations are
multiplied by a “drying” factor a. For example, the u-equation becomes

L0 )+ o[ Aun(w) + Ava(w) + A0

(% (uahl _ Uahg
h1h2 352 851
g OC 1 0P,

= -2 + aFY + F + Dy (u
h10&  pohi 0& ! ! @

¥ a (Dmhl(m) + Dmhg(m)) (5.366)

) — 2Qu sin ¢}

Rn+l,it;u Rn—i—l,itﬂ)
. I
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where « decreases from 1 when the total water depth is lower than a
critical value and becomes 0 when H reaches a minimum value

a=1 if H > d.s

H — dmin .
o = m if pin < H < depig
a=0 if  H<dun (5.367)

In this way the momentum equations reduce to a balance between
the time derivative, surface slope and vertical diffusion (bottom fric-
tion) terms when H — d,,;,. The formulation provides a continuous
transition from a wet to a dry condition in contrast to schemes, dis-
cussed below, using a “mask” function which sets cells to a dry or wet
state depending on some drying criterium. A second advantage is that
the scheme only involves two tunable parameters. Default values are
derit=0.1 m, d;;,,=0.02 m.

2. The total water depth at C-nodes is bounded below by the minimum
water depth to prevent negative water depths

Hi; = max(H, din) (5.368)

so that a (spurious) small amount of water remains if a cell becomes
dry. Equation ((5.368]) implies a second condition for the surface level

Gij 2 dimin — hij (5.369)

This means that if the value of (;;, obtained from the continuity equa-
tion, falls below the minimum value (5.369)), a (small) amount of water
is added to the water column in violation of mass conservation. No
correction is applied in the current version of COHERENS, but the spu-
riously added water is stored in the program variable 6. H which mea-
sures the error in water depth and is increased by the amount d,,;,, — H
when H drops below d,,;,. By its definition §.H is non-negative and
cannot decrease in time.

3. In the absence of a drying mechanism the total water depth at the
velocity nodes is calculated as the (weigthed) average of the depths
at the surrounding C-nodes. Experiments showed that this method
produces large horizontal gradients for the vertical grid spacings for
water depths close to the minimum value, and, hence, unrealistically
high vertical current magnitudes after substitution in the baroclinic
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continuity equation (4.102]). To smoothen the solution the depth at the
velocity is taken as the minimum of the surrounding C-node values, i.e.

H = min(H;_ 1,J,HC) if min(H;{_ 1],HC) < depit
Hiy =min(H, \, H;) it min(H; |, H;) < derir (5.370)

Disadvantage is an unphysical retardation of the flow through the ve-
locity interfaces.

4. To prevent an unrealistic outflow from a drying cell the surface slope
is calculated with a modified surface elevation at both sides

g—éi = max((z,mm miny Hi — D 1))
— max(g 1, N (dpin, Him1 — hz))

g—é ; = max(gj,m yin, H; — hj—l))
_ max(@ 1, min( pmin, Hj—1 — hj))

(5.371)

5. Equations f show that the bottom drag coefficient and
hence the bottom friction increases exponentially at small water depths.
This will slow down the water flow at water depths close to the mini-
mum value. Note that this effect is only present when the bottom drag
coefficient is calculated as function of a roughness length.

5.4.2 Inundation schemes

The drying/wetting scheme described in Section has been extended in
Version 2.3 of COHERENS by the implementation of so-called “mask func-
tions”. The objective is to simulate inundation processes where coastal boun-
daries are moving dynamically or to simulate the flow over obstacles. There-
fore, grid cells of the computational domain will become “dry” or “wet”
depending on the value of the total water depth. In this way users have
the additional option to simulate inundation apart from the original dry-
ing/wetting scheme already present in COHERENS.

Inundation schemes are focused on simulating dynamic processes. “Dry-
ing and wetting” refers to an existent functionality used to define “wet” and
“dry” areas in the computational domain. COHERENS uses this functionality
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to define the coastal boundaries, this definition is performed at the initiali-
sation stage and only once. In this way a distinction is made of three type
of grid cells

e Land cells which are always dry and where no calculation is performed.
They are defined by the user as cells where the mean water depth has
a flagged value.

e Cells which are (temporarily) dry (non-active) but can be inundated
by the rising water. Calculations in these cells are disabled until they
are inundated from a neighbouring cell. The total water depth remains
limited from below by d,,;, so that at least a small amount of water
is present. In this way, dynamic coastal boundaries can be simulated.
Note that land topography is represented by negative bathymetric va-
lues (see below) so that there exists no lower limit for the mean water
depth except for values equal to the data flag.

o Active wet cells where all calculations are enabled.

The “mask functions” are defined as criteria for “masking” grid cells
according to their condition (dry or wet). When the criterium evaluates
as .TRUE. at a particular grid cell, the mask function will “mask in” the
cell. Hence, they will be considered for the solution of the hydrodynamic
equations. On the other hand, if grid cells become dry, the mask criterium
will “mask out” such grid cells and updates of quantitites defined at these
cells will be suspended. Dry cells are also excluded from the interpolation
of model variables on the model grid (see Section . The process is
repeated at the start of each predictor time step. Once a cell is set to a
“dry” status, the adjacent velocity nodes are blocked and the all currents at
these nodes are set to zero to prevent further drying of the grid cell. The
criteria are applied at the start of each predictor time step. If the criterium
at a dry cell evaluates as .FALSE. at a later time, the cell is reactivated again
and water is allowed to enter through the side faces.

Eleven mask functions are defined and can be used in combined form.
They can be divided in four groups. The first group compares the water
depths of a cell and its neighbours with a threshold value d;;, and is composed
of the following six criteria:

max(H;j, Hi—1j, Hiy15, Hij—1, Hij11) < duw (5.372)
min(Hy;, Hi—yj, Hiy1j, Hij—1, Hijy1) < du, (5.373)
mean(Hij, HZ’*Lj? H/L'Jrl’j’ Hiyjfl, Hi,jJrl) < dth (5374)
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max(H,;_1;, Hiv1j, Hij—1, Hi j41) < duw (5.375)
min(H;_yj, Hiy1 5, Hijo1, Hijp1) < du, (5.376)
mean(Hi_l,j, Hi+1,j7 Hi,j—l; Hi,j-{—l) < dtd (5377)

where “mean” denotes an averaged value (excluding land cells which are
permanently dry).

A second group of criteria verifies the “status” of the neighbouring cells.
The status is defined by the function N which evaluates to 0 at dry and 1 at
sea, cellsﬂ The following criteria, used to prevent the formation of isolated
dry or wet cells, have been implemented:

max(N;_1j, Niy1,,Nij-1, Nij41) = 0 (5.378)
min(N;-1 5, Niv1,, Nij-1, Nijy1) = 0 (5.379)

The third group is a variant of the previous one and checks, in addition,
whether the total water depth of the grid cell is lower than the threshold
value:

maX(./\/;_17j,./\/;+17j,./\/;’j_1,./\/;',j_i_l) =0 and Hij < dth (5380)
min(N;_1;, Nig1,j, Nij—1,Nijp1) =0 and  H; < dy, (5.381)

The last scheme is intended for channel flows and overflowing dykes. The
criterium uses the total and mean water depths at the grid cell and its neigh-
bours

min(hi_l,j - Hi—l,jy hi—l—l,j - Hi—l—l,j) > hz‘j (5382)

or
min(hi7j_1 — Hi,j—h hi,j—l—l — Hi,j-‘,—l) > hij (5383)

depending on whether the along-channel direction is along the X- or Y-axis.

The above criteria can be in applied in combination. This means that,
if several criteria have been activated by the user, the cell becomes dry if at
least one of them turns .TRUE. The cell becomes wet again if all of them
evaluate to .FALSE.

The following remarks are given for the user:

e The inundation algorithms can be used for tidal flats, i.e. areas below
mean sea level becomes dry/wet during low/high tide, as well as for
land areas above mean sea level. In the latter case, a topography of
the land, located above the mean sea level, has to be supplied. Land
topography is represented in the code by cells with a negative mean

"Represented by the model variable nodeatc (see Section [10.1.2.4)).
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water depth, sea areas by positive mean water depths. A data flag,
given by the model parameter depmean_flag, has to assigned to the
locations, considered as permanent land.

In the 3-D case, the mask cannot be changed during a 3-D (baroclinic)
time step. This means that the mask criteria are tested after the last
corrector step and before the next predictor time step and not at each
barotropic time step. When a purely 2-D grid has been selected, the
criteria are obviously applied at each (barotropic) time step.

In the current implementation, open boundaries cannot be blocked so
that they should be located where no drying process can take place.

The threshold depth dy;,, used to determine whether a cell is dry or
wet, should be defined to a value sufficiently larger than the minimum
depth d,,;,, but at the same time lower than the critical depth d.,;.

5.5 Scalar transport equations

5.5.1 General aspects of discretisation

General features of the discretisation are

With exception of turbulence variables (see Section |5.6)) scalar quanti-
ties are located at C-nodes.

Horizontal advection and diffusion terms are discretised explicitly in
time.

In analogy with the momentum equations vertical advection is taken
semi-implicitly while vertical diffusion is treated fully implicitly. The
equations for vertical advection and diffusion are presented here in a
more general form covering both the explicit, implicit and semi-implicit
cases.

As recommended by Ruddick (1995), the vertical spacing hs is elimi-
nated from the time derivative (except in the absence of advection) by
adding corrector terms to the right hand side of the transport equation.

Source terms are discretised explicitly. Contrary to the momentum
and turbulence transport equations the sink terms are evaluated ex-
plicitly. This has no impact on temperature and salinity, but has been
introduced for future implementation of biological concentrations where
conservation plays an important role.
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e When the momentum equations are solved using mode-splitting, the
advecting current (us,vs) used for horizontal advection is composed
of the baroclinic current at the “predictor” step plus a filtered depth-
independent component obtained by averaging over the more rapidly

varying 2-D mode (see equations (5.26)—(5.27). Otherwise, uy = u™!,

vp = LR

e The transport equation is integrated in time with or without the op-
erator splitting method depending on the type of advection scheme.
Note that the program allows to use of different advection schemes in
the momentum and scalar transport modules.

In analogy with momentum the time discretisation of a scalar transport
equation depends on the type of advection scheme selected in the program.
Several schemes are available. The type is selected with the model switch
iopt_adv_scal which, in analogy with the switch iopt_adv_3d for momentum,
has the following meaning

0: horizontal and vertical advection disabled

1: upwind scheme for horizontal and vertical advection

2: Lax-Wendroff scheme for horizontal, central scheme for vertical advection]
3:

TVD (Total Variation Diminishing) scheme using the superbee limiter
as a weighting function between the upwind scheme and either the Lax-
Wendroff scheme in the horizontal or the central scheme in the vertical

4: as the previous case now using the monotonic limiter.

5.5.2 Alternative formulation of the transport equa-
tion

The general form of a scalar transport equation is given by (4.76)). Before
discussing its discretisation, the following modifications are made

1. The advective velocities u, v are replaced by the “filtered” currents
us, vy given as the sum of the “filtered” depth-mean current and the
baroclinic part of the “predicted” current so that the numerical time-
integration guarantees the conservation of the scalar quantity (Deleer-
snijder, 1993)).

8The “pure” Lax-Wendroff scheme has only been implemented for illustrative purposes
and should be avoided in realistic simulations.
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2. Making use of the continuity equation (4.60)), the time derivative term
is written as

10 O ap Ohg
heot ") = o T
0
= D Chw) - Chw) —Calw)  (5380)
where the “corrector” terms are defined by
f v 9
Cal) = T hohs O (hahsuy) (5.385)
f v 9
Coly) = T hahs D6, (h1hgvy) (5.386)
Y Ow
Cea(v) = T 05 (5.387)

3. For reasons of conservation the source and sink are both discretised
explicitly. The operation is not without risk since the method may
produce negative concentrations (Burchard et al., 2003). To simplify
the notations the following operator is defined

TW)=P)-S8¥) (5.388)

An alternative method is the Patankar scheme, discussed in Section [5.6
below, which is monotone but does not guarantee conservation.

The new form of the scalar transport equation then becomes

0
a—f + AL(W) + Afy(9) + Ay (¥) = CL(1) — Ch($) = Cus(¥)
= T(®) + Dsu(¥) + Den1(¥) + Din2(¥) (5.389)
where Azi are the horizontal advective operators using the filtered currents
1 0
S = v
A (¥) = T hahs 0, (hahsugy) (5.390)
1 0
f = B — B
Ao (V) = T hahs 06 (hihgvgi)) (5.391)
(5.392)

5.5.3 Time discretisation

Three cases can be distinguished for the time integration. They are discussed
in the subsections below.



262 CHAPTER 5. NUMERICAL METHODS

5.5.3.1 integration without advection

In the absence of physical advection (iopt_adv_scal=0) the transport equation

is integrated in time using

hg+1¢n+1 _ hg¢n
hytt At

= Hvst (¢n+1>+(1 _Hv)st (wn)—i_T(d}n)—FDshl (¢n)+Dsh2 <¢n)
(5.393)

5.5.3.2 integration with advection but without operator splitting

If iopt_adv_scal=1 or 2, the transport equation ([5.389) is integrated in time
using

wn—i—l wn

= AL L") — AL +Chw)

— 0, A, (") — (1= 0,) Ay (¢") + Cas (") + 0, Dy (")
+ (1= 0,)Dsp(¥") + T (") + Dsp1(¥") + Dsna(¥")

(5.394)
5.5.3.3 integration with operator splitting
If iopt_adv_scal=3, integration is performed along the following steps:
e Part A
n+1/3 wn
= ALY + L") + Do (") (5.395)
n+2/3  nt+l/3 s s
A = AL + CLW) + D) (5.396)
nt+l o n+2/3 o/
A = AW = (1= 0) AET) + Cas(v7)
+6,De(W5) + (1= 6,)Dsn (03") + T(4")
(5.397)
e Part B
n+1/3 Q/Jn s
e = AW — (1 ) Au(87) + Caa(47)

+ 0, D, (W) + (1= 6,) Dy (V") + T (")
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(5.398)
n+2/3 n+1/3
Bt AL W)+ ChW) + Daawy ™) (5.399)
kL g2/ 2/3 2/3
Bt = —Au(p™) + e + D (™) (5.400)
e Updated value
1
w?ﬁ*l — 5( n+1 +,l/}n+1) (5401)

For the reasons discussed in Section [£.3.3.1] vertical advection is discre-
tised semi-implicitly and vertical diffusion implicitly. The default values,
taken for the implicity factors, are then given by 6, = 0.501, 6, = 1. The
use of the TVD scheme with the operator splitting method increases the
CPU time but has the capacity to preserve horizontal and vertical gradients
in frontal areas. The user therefore needs to make a balance between CPU
time and accuracy when selecting an appropriate scheme.

5.5.4 Discretisation of advection

The advective terms in the scalar transport equations are written as the
divergence of the fluxes Fy, F5, F3 defined in Table [5.5}

19 19

f _

AhW) = e (hahsusv) = o 96, (hahsFr) (5.402)
19 19

f _

Al0) = o a&(hlhgw) o O, <h1h3F2> (5.403)

10, | 10F
A () = h—@(w)—h—gg (5.404)

5.5.4.1 advection in the X-direction

The advective term in the X-direction is obtained by differencing the flux F}*
at the C-node

Ry Iy F“i h“l h“Z F“l
Al (w)fjk _ P24,k T ik 2;ij13:05k L 1i5k (5.405)

c c c
h h2 z]h3 gk

1;ig

The flux is calculated from

Fluzg = <]‘ - Q( zgk))F pyijk + Q( zgk)ﬂw jijk (5406)
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where F . and Fjy ., are the upwind and Lax-Wendroff fluxes at the U-
node:

1

Fupigr = §Uf;z’jk((o‘ij + Sije)Vi-1k + (Bij — Sijk)@/)ijk) (5.407)
1

F}%;ijk = §uf;ijk<<04ij + Cijk)wifl,jk + (@; — Cijk)wijk> (5.408)

where s;;, and ¢;j;, are the sign and CFL number of the advecting current

. Uf;l'jkAt

Siji = Sign(ugije) »  Cijk = L (5.409)
Liij
i M1,
Qij ==, Bij = (5.410)
’ hl;ij ’ hl;ij

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_scal. The ar-

gument 7 of the weight function is defined by

(i + si) AFL ) oy + (Big — siji) AFS

U

Tijk = u
J 2AFY,
AF, Frosise — Fupsijn (5.411)

5.5.4.2 advection in the Y-direction

The advective term in the Y-direction is obtained by differencing the flux FY
at the C-node

v v v v v v
h h3;i,j+1,kF2;i,j+1,k —h 'hS;iijZ;ijk

Al ()5, = =5 L (5.412)
" " hiijhg;ijhzc’);ijk
The flux is calculated from
Flvw = <1 - Q(Tfjk)>Fsp;ijk + Q(T;}gk)Flgmjk (5.413)

where F . and Fj ., are the upwind and Lax-Wendroff fluxes at the V-
node:

" 1
Foviie = §Uf;ijk<(aijk + Sije) Vi j-16 + (Bige — Sijk)wijk) (5.414)
1
Frijr = §Uf;ijk<(@z‘jk + i) i j—14 + (Bijk — Cijk)@/)ijk) (5.415)
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where s;;, and c¢;;;, are the sign and CFL number of the advecting current

Sije = Sign(vpije) ,  Cigr = fhf,k (5.416)
2:1j
hg'ij hg'ij—l
o =5, By =3 (5.417)
Ty T by,

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_scal. The ar-

gument r of the weight function is defined by
(vij + sijk) AL, 4 g+ (Big — sije) AFY 1

v Z?]
Tijk = v
/ 20FY,
AFiZ‘k = Elzu;ijk - F;)p;z’jk (5'418)

5.5.4.3 advection in the vertical direction

The vertical advective term is obtained by differencing the flux F3’ at the

C-node " "
Fy F3;ijk:

A ()5, = (5.419)
i
The flux is calculated from
Fgign = <1 - Q(sz?k))FqZ);ijk + Qrije) Feciiji (5.420)

where F . and F,., are the upwind and central fluxes at the W-node:

1
Floik = Witk <(aijk + Sijk)Vije—1 + (Bijk — Sijk)wijk> (5.421)

2
1
Fooin = 5%1'1}14: <Oéij1c1/}z‘j,k—1 + @‘jk@/)ijk) (5.422)
where
hCl hCZ _
sije = Sign(wijy) ,  Qijr = hi}—w, Bijk = quk ! (5.423)
3;igk 3;ijk

The form of the weighting function is given by (5.50)—(5.53|), depending on
the type of advection scheme, selected by the switch iopt_adv_scal. The ar-

gument r of the weight function is defined by
(i + siju) AFS 1 + (Bigk — sije) AF 41

= m
" 2AF,
Aﬂljk = F;Z;ijk - Fﬁ;;ijk (5.424)
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5.5.4.4 corrector terms
The corrector terms, defined by ((5.385))—(5.387)), are discretised using

u u u u
h2;z‘+1,jh3;i+1,jk“f;i+1,jk - h2;ijh3;ijk“f;ijk

CLW) = ik AR (5.425)
’ hiiihs.ihs.n
c Ry o1l 1k Vpigaik — DY hs 0V agn
CLW) = Pyp—rt ’]H}fc hi he USRS (5.426)
L3 120580350k
wi', — W
Coa(¥))" = 2% (5.427)

C
h‘3;ijk'

5.5.5 Discretisation of diffusion

The diffusive terms in the scalar transport equations are written as the di-
vergence of the fluxes Dy, D,, D3 defined in Table [5.5;

B 1 0 hohg O\ 1 0
Dy () = hlh—ghgﬁ_&<>\H I 3_51) = Tihahs 06, <h2h3D1>(5.428)
B 1 0 hihs 0¥\ 1 0
Do) = 5 ks 96, (A I agg) = Tuhahs 06, (a2 )5.429
10 /Aoy 1 OD;
Dy(¥) = h_3%<h_3£> = e 05 (5.430)

5.5.5.1 diffusion in the X-direction

The diffusion term in the X-direction is obtained by differencing the flux D
at the C-node
D31 15 1 6 DYk — Py S0 DY
Dshl (w);fjk — 52 5J 30 5] hc 7Z]/LC 5J hc 58] ) 3] (5‘431>
L3ig12;15 103545k

The flux is given by
N (i — i1 4
Diij = ijkh“ Vi) (5.432)

13ij

5.5.5.2 diffusion in the Y-direction

The diffusion term in the Y-direction is obtained by differencing the flux D}

at the C-node

Ryl gk Dy oy e — Ry R DS

DS C — ﬁzaj—"_ 77'7]+17 27Z7J+17 ) 317’] 277‘.] 5.433
h2(¢)2]k he . he . he ( )

1535"92545" %3505k
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The flux is given by

NG (i — Wi
Dy = Hw’khv LARE) (5.434)

215

5.5.5.3 diffusion in the vertical direction

The vertical diffusion term is obtained by differencing the flux DY at the

C-node w w
D3;ij,k:+1 - D3;ijk

st<wijk)c = he (5435)
3iijk
The flux is given by
w X (igr, — ijar)
D3;z’jk =L ;Lé” ) ] (5.436)
i

5.5.6 Diffusion coefficients for scalars
5.5.6.1 horizontal diffusion coefficients

The discretised values of the horizontal diffusion coefficient at the U- and
V-nodes are obtained by applying (4.81)) and interpolating D%, and Dy’

given by (|5.213))—(5.214)), to the U- and V-nodes

2 2
uH§ijk - Cshqf;ijhg;ij\/<D%;ijk> +<D1§;ijk> (5437)

2 2
Hijk = Cshll);ijhg;ij\/<D%;ijk> +<D§;ij> (5.438)

5.5.6.2 vertical diffusion coefficient

The vertical diffusion coefficient for scalars Az is obtained from one of the
available turbulence schemes, described in Section[4.4] Values are first stored
at the W-nodes and interpolated afterwards at the U- and V-nodes for the
calculation of the vertical diffusion fluxes in the momentum equations. The
evaluation of Ay only involves algebraic expressions so that the discretisation
procedure is straightforward.

For further comments see Section [£.3.12.2

5.5.7 Boundary conditions
5.5.7.1 surface boundary conditions

The program allows four type of boundary conditions
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1. Neumann condition with a prescribed (downward) surface flux F¥ o

DYy, = FoY (5.439)

ERY]

2. Neumann condition using a surface transfer velocity
Dggisz = Cjzg( ;ljzg - (]- - ev)wisz - QUQ/JZJ]F\}Z) (5440)

where C¥_. is the transfer velocity and ¢, . a prescribed external value.

ERY] ERA]

3. Dirichlet condition with a prescribed external value ¢, at the first
C-node below the surface

YL = (5.441)

szg

4. Dirichlet condition with a prescribed external value ¢, at the surface

itself. In that case the value at the first node below the surface is
determined by interpolation

n+1
nil 2hgiin Vsag + 155N, Yigm. -1 (5.442)
W 2h§UmN + h3 385, Nz

which can be more conveniently rewritten in “tridiagonal” form

hs.iin 2hgi;n
;8] Nz TL‘+1 + wﬁfl — 50 IN 2 w (5 443)
2hw 4 he ij,N,—1 ijN> 2hW 4 he ERA .
3;iJ N 3;iJ N 35ij N 3545 N

Note that the second Neumann condition is semi-implicit whereas both Dirich-
let conditions use a fully implicit formulation.

5.5.7.2 bottom boundary conditions

The bottom boundary conditions are similar to the ones at the surface.

1. Neumann condition with a prescribed (upward) bottom flux Ff ”w

Dy = FY (5.444)

byij

2. Neumann condition using a bottom transfer velocity
Dy = Gy (( — 0,) i1 + 0,07 — w;;‘jij) (5.445)

where C¥

b 18 the transter velocity and ), a prescribed external value.
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3. Dirichlet condition with a prescribed external value ¢y,. at the first
C-node above the bottom

VIt =gy (5.446)

4. Dirichlet condition with a prescribed external value ¢y, at the bottom
itself. In that case the value at the first node above the sea bed is
determined by interpolation

w w c n+1
n+1 2h’3;ij2wb;ij + hS;ijl ij2

iyl w c
2h3;z‘j2 + h’3;z‘j1

(5.447)

which can be more conveniently rewritten in “tridiagonal” form

c w
wnJrl . h‘S;ijl 1/}n+1 o 2h3;ij2

ij w c 2 = orw o e Vhij (5.448)
" 2hgij0 + M5 ” 2hijo + Doy

Note that the second Neumann condition is semi-implicit whereas both Dirich-
let conditions use a fully implicit formulation.

5.5.7.3 lateral boundary conditions

At the open boundaries the flux normal to the boundary is determined by
the upwind scheme. This means that

1
Lijk = §Uf;z‘jk ((1 + Sijk)¢fjk +(1F Sz‘jk)%:z‘—mk) (5.449)

at U-boundaries and

1
Fyijn = 50ssiik ((1 + i) i + (1F Sz‘jk)%,jsjfl,k) (5.450)

at V-boundaries, where the upper (lower) sign applies at western/southern
(eastern/northern) boundaries, the flow sign s;;; is defined by (5.409) or
and 17;, denotes an external profile of ¢ at one-half grid distance
outside the open boundary. The open boundary problem then consists in
determining the external profile 1¢. The following four methods are available

1. Zero gradient condition.

fjk = ¢i:i—1,jk or Fﬁjjkzuf;z‘jk@bi:i—lgk (5451)
wz‘ejk = Yijj-1k Or sz;ijk:?lf;ijkwi,j;jq,k (5.452)
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2. The external profile is prescribed.
3. Radiation condition using the baroclinic wave speed.
e;usn+1 e;u;n u n
Vi o= (1- )%gk + w1k (5.453)
e;vn+1 e;u;n
wljk " = (1 - )'l/} ik + wl]ka]j 1,k (5454)

The weight factors are given by

u RAt n+1;c
wijk = ihu \/ sz 1,5

1549
RAt

W = F—y/ gy H (5.455)
2513

where R is the prescribed ratio of the baroclinic to surface gravity wave
speed. Default value is 0.03.

4. Orlanski condition (see equation (4.383)).

Qﬂgz;nH = (1 - OR(T%;ijk’ Tg;ijka nggk:)>¢szn

+ OR(TToijks T2k T30 ) Vitio1 gk (5.456)
w;’zmﬂ = (1 - OR(rf;ijk’ Tg;ijka nggkz)>wszn

+ Or(rY.iji Toijio Taaik) Vi joj 1k (5.457)

where the Orlanski function Og is defined by (5.269) and
u _n u _ n—1 u _ n—1
Tk = wi:iq,jk v Toige = Yaic1gk 0 T3k = Vitti—2,jk (5.458)
v _n v _ n—1 v _ n—1
Tk = wi,j:jfl,k v Tk = ¢i,j;j_1,k7 T35k = Vi jr1-2.k (5.459)

Advective fluxes normal to a closed (coastal) open boundary are set to
Zero.

5.5.8 Solution of the discretised equations for scalars

As for momentum, the discretised equations can be written in tridiagonal
form, as given by . Expressions for the matrix components are given
below for the case that no operator splitting is used. They are easily extended
to the case with operator splitting.

When a Dirichlet boundary condition is used at the surface (bottom), the
surface (bottom) value of ¢ is determined by the boundary condition itself.
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This means that k below varies between k,,;, and k,,,, where k,,;, equals 1
for a Neumann (flux) condition and 2 for a Dirichlet condition at the bottom.
Likewise, k.. equals N, for a Neumann and N, — 1 for a Dirichlet condition
at the surface.

For simplicity, the 7 and j indices are omitted.

1. Time derivative.

The contribution of the time derivative is given by
AL =0, By=1, Cp=0, D=4} (5.460)
where kin < k < kpaz-

2. Vertical advection.

The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

A27 = —Qaclz (Ozk + fk)
B, = —0.c; (Bk — fx)
c- — 0

D = (1= 6u)cp ((on+ fiuiy + (B — fi)uR)  (5.461)

where 2 < k < k40,
_ Atwy
cp =
2h§;k

and ijk, Bijk, Sijk, Tiy are defined by (5.423) and (5.424).

The terms arising from the flux above the k-level, are

= (190 s (5.462)

AF =0
Bit = buc; (g1 + frs1)
C" = 0a6 (Brsr — frr)
DIt = —(1—0,)c¢ <<O{k+1 + fer)Vp + (Br1 — fk+1)¢/?+1>
(5.463)
where k,;m <k < N,—1and
Atw?
of = =kt (5.464)

2hg,
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3. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

S AN

: hS,.hs,

Bt _ AN

: vhg,khéﬁk

c- =0

" AN

D, = _(1 - HU)W(@/Jk - 1/)k_1) (5.465)
3;k" "3k

where 2 < k < kj0z-

The terms taken from the flux above the k-level, are

Al =0
Bt _ AN
k - Ve w
hS;khB;k+1
o = AM??Z)H
k - ”hc hw
3;k""3k+1
AN
d T;k+1 n n
Dk+ = (1- 9v)—+(1/1k+1 —r) (5.466)

hg;khq?ﬁk—f—l
where k,;p, < k < N, — 1.

4. Other explicit terms.

All other terms are explicit. Their contributions can be written as
Ay, = B,=C,=0
Dy = AT = Ay - AL+ Ch(w);
+ CLE + CaW)} + Do () + Daa(¥); ) (5.467)
where kin < k < ks

5. Surface boundary conditions.

Contributions from the surface boundary conditions depends on the
type of condition as described in Section [5.5.7.1]
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e Neumann condition with a prescribed surface flux F¥%.

AtF¥w

c
hB;NZ

Ay, =By, =C), =0, Dy = (5.468)

e Neumann condition using a surface transfer velocity.

AtCY AtCY
Ay, =Cr. =0, By =6,7—. D = (ve-(1-0,)v3.)
3; N,

(5.469)

e Dirichlet condition with a prescribed external value ¢ at the first
node below the surface.

AN, =Cr. =0, By, =1, Dy =15 (5.470)

e Dirichlet condition with a prescribed external value ¥¥ at the
surface itself.

h3.n
AS - vz
Nz 20Y . + hi.n,
By =1, C3 =0
QR ahv
Dy = 2wl (5.471)
’ 2y N, + hgn,

6. Bottom boundary conditions.

Contributions from the bottom boundary conditions depends on the
type of condition as described in Section [5.5.7.2]

e Neumann condition with a prescribed bottom flux F bw e

ALESY
A=pBt=Ct=0, D= hcb (5.472)
3;1
e Neumann condition using a bottom transfer velocity.
AtCY AtCY
Ap=Ch=0, By=6,="t D}=S "ty - (1-6,)07)
By h3a
(5.473)

e Dirichlet condition with a prescribed external value 1; at the first
node above the sea bed.

Ab=cCt=0, Bi=1, D)=v (5.474)
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e Dirichlet condition with a prescribed external value ;" at the
bottom itself.

A = 0, B=1

he
2h3;2+h3;1
R,
pr o Zhsati (5.475)

2h’§v,2 + hg;l

5.6 Turbulence transport equations

This section deals with the numerical solution of the transport equations
for turbulence energy k, for the dissipation rate € and
for the turbulent energy times mixing length kl. The discretisation algo-
rithms are highly similar to the ones used for scalar quantities. Main differ-
ences are

e Turbulence variables are determined at W-nodes.

e Production terms are taken explicitly at the old time step t", whereas
the sink terms are discretised in time using the “quasi-implicit” ap-
proach, proposed by [Patankar| (1980), or

1/}n+1

o (5.476)

P) =PE"), SW)=PE")

e Since the turbulent equations are solved before the momentum equa-
tions, the horizontal advective terms are discretised using the non-
filtered current (u,v).

e The discretisation algorithms for advection and diffusion are the same
as for C-node scalar quantities, except that all quantities are displaced
in the vertical. This means that 3-D variables (fluxes, advective veloci-
ties, diffusion coefficients, ... ), previously evaluated at (C,U,V,W,UW,
VW)-nodes are now taken at respectively (W,UW , VW C,U,V)-nodes.

The turbulence transport equations are generally written as

00 L At () + Ans() + Au() — Car() — Coat) — Cog(0)

ot
= P() — S() + Dyso(¥)) + Dp () + Do (1)) (5.477)
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where the corrector and horizontal advective operators Cy; and Ay; are given

by (5.385)—(5.387)) and (5.390)—([5.391)) with (uy,vr) replaced by (u,v).
Despite the similarities with the previous section, the discretisation me-
thods are described in detail below, to avoid any confusion.

5.6.1 Time discretisation

Three cases can be distinguished for the time integration. They are discussed
in the subsections below.

5.6.1.1 integration without advection

In the absence of physical advection (iopt_adv_scal=0) the transport equation
is integrated in time using

th-l;wl/}n-i—l;w i hgl?w wn;w

: evst n+1;w 4 1 — 01} st n;w 4 7) n;w

¢n+1;w

wn;w

—S™Y) + Dana (V™) + Dana (™)

(5.478)

5.6.1.2 integration with advection but without operator splitting

If iopt_adv_turb=1 or 2, the transport equation ([5.477)) is integrated in time
using

wn-l—l;w _ wn;w . . . .
A —Ap (V") + Ca (™) = Ap2 (™) + Csa (™)
- ‘ga-Av(wn—H;w) - (1 - ea)Av(zﬁmw) + Cs3(77/)mw)

+ 0, D (V") + (1 — 0,) Dy (W) + P (™)
n+1;w
-S w""”)% + Daa (V™) + Dapa (™™ (5.479)

5.6.1.3 integration with operator splitting

If iopt_adv_turb=3, integration is performed along the following steps:

e Part A

n+1/3;w njw
A -

A7 = —Apn (V") + Ca (™) + Dy (™) (5.480)
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n+2/3w nt+1/3w

: At : = A + Caym™)

+ Do (/5 (5.481)

Z—&-l;w . 7#Z‘+2/3;w 5 iy
= O A (L) = (1= 0a) Au(¥h)

At
+Cs3(¢nw) ""9 st( s w)
+ (1= 0,) Dy ( "*””) + P ()

+2/3, 1/} n+1w
e Part B
n+1/3w _ wn;w 1/3
— = oA (05 ) = (1= 0a) A, (")
+ Caa (47) + 6, D (451)
+ (1 = 0,) Dy (") + P (™)
7¢n+1/3;w
=S —— (5.483)
¢n,w
n+2/3w _  n+1/3w
B At B :_AhQ( n+1/3w>+652(wnw>+DSh2( n+1/3w)
(5.484)
P R +2/3; +2/3;
B A5 + Calu™) + Do ()
(5.485)
e Updated value
. 1
P = (R ) (5.486)

As before, the implicity factors are given by 6, = 0.501, 6, = 1.

5.6.2 Discretisation of advection
5.6.2.1 advection in the X-direction

The advective term in the X-direction is obtained by differencing the flux
Fi* at the W-node

hg ) puw kFluw Lk hg e kFluwk
A _ P21, 851k i sij_ 3iijk” Lid 5.487
hl(¢)z]k h? ”hg Z]héuwk ( )
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The flux is calculated from

Fue — (1 . Q(r“w)>F“w L Qi) (5.488)

1535 — ijk up;ij igk/ = lwiijk

where Fii% . and Fpt ) are the upwind and Lax-Wendroff fluxes at the UW-
node:

uw 1 uw w w
Fup;ijk = iuijk <(aij + Sijkz)wi—l,jkz + (ﬁm - Sijk)wijk> (5-489)

uw 1 uw w w
F‘lw;qjjk = §U/ijk ((aij + Cz‘jk)l/)i—uk + (@‘j - CijkW’z‘jk) (5'490)

where s;j, and ¢;;;, are the sign and CFL number of the advecting current

. ww ugip At
sighe = Sign(uijy) , gk = = (5.491)
1iij
hi.ij hii 1
Wij =, B = (5.492)
’ hl;ij ’ hl;ij

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_turb. The

argument r of the weight function is defined by

(v + sigr) AF 5+ (Big — siji) AFSS i

U

Tijk = uw
d 2AF
AFZJLZ} = Eiﬁ;wzgk - Fqﬁijk (5.493)

5.6.2.2 advection in the Y-direction

The advective term in the Y-direction is obtained by differencing the flux
FP" at the W-node

v vw vw v VW vw
h1;i,j+1h3;z’,j+1,kF2;i,j+1,k —h ‘h3;iij2;ijk

An2 (V). = _BhELE (5.494)
" h1§ijh2;ijh3;ijk
The flux is calculated from
Flv,zlg = (1 - Q(ﬁ%)) F;);l;jijk + Q(r%%)ﬂ%f’”k (5.495)

where Fi7% . and Fp7 ) are the upwind and Lax-Wendroff fluxes at the VW-
node:

VW 1 VW w w
Fup;ijk = §U¢jk((04ij + Sijk)%’,j—l,k + (5@']’ - 3ijk)¢ijk> (5-496)
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vw 1 vw w w
Figie = 3V ((%‘ + i) i p + (Bij — Cz’jk)%k)) (5.497)

where s;;, and ¢;j;, are the sign and CFL number of the advecting current

vl AL
sije = Sign(vijy),  cijk = éf (5.498)
2iij
hg'ij hg'ij—l
oy = 1)7 y 51 = 71; (5499)
T hby T hyy,

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_turb. The

argument r of the weight function is defined by

(cij + siji) AF o+ (Bij — siji) AF

vw %) ?
Tijk = vw
AF;;“,: = Eli)vwz]k - Fﬁ;’fijk (5.500)

5.6.2.3 advection in the vertical direction

The vertical advective term is obtained by differencing the flux F¥ at the
W-node

C C
FS;z’j,k—l

Fe.
A (), = 25— (5.501)
h3;ijk
The flux is calculated from
Fsin = (1- Q(Tfjk)) Foiin + Qi) Foein (5.502)

where F{ .. and F ., are the upwind and central fluxes at the C-node:

C 1 C w w
Flpijk = Wik ((1 + sijr) Vi + (1 = Sijk)wij,kJrl) (5.503)

2
C 1 C w w
Fooin = Ewijk( ket U ) (5.504)
where
Sijk = Sign(wgj) (5.505)

The form of the weighting function is given by (5.50)—(5.53)), depending on
the type of advection scheme, selected by the switch iopt_adv_scal. The ar-

gument 7 of the weight function is defined by
(1 -+ Sijk)AE?,k—l + (1 - Sijk)AFi(‘:j,k—l—l

w

Tij = c
i 2AF,
AF{}k = Fcce;ijk - Fucp;ijk (5.506)
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5.6.2.4 corrector terms

The corrector terms are discretised using

u uw uw u uw uw
w a1 P8 e e — e ha iy

C, voo= ¥ 5.607
P g1 o i Vig e — Pl haidnvie
CS w — ’LU 7lvj+ 77':]"’ ) 7‘7.7+ ) 58] 58] i 5508
w w Wiikt1 ~ Wijk
Cs3(¢) = z’jkM (5'509)

héu;z‘jk
5.6.3 Discretisation of diffusion

5.6.3.1 diffusion in the X-direction

The diffusion term in the X-direction is obtained by differencing the flux D}
at the W-node

u uw uw u uw uw
haivn s e DY ge — M3 hstie Die

o . 5.510
hl (w)mk’ hiz]hg,z]hg’i@]k ( )
The flux is given by
uw /\%Iw( Zwk — 1/);{1 k)
Dy, = Jh%” J (5.511)
g

5.6.3.2 diffusion in the Y-direction

The diffusion term in the Y-direction is obtained by differencing the flux DY
at the W-node

v vw vw v VW vw
D w M a1l 1w Do e — P Dain 5512
shQ(w)ijk = he B hw (5.512)
1:45'%2555" %3515k

The flux is given by

vw UHw( 'Zuk_ ;f}‘fl,k)
Dy = jhv J (5.513)

2:45

5.6.3.3 diffusion in the vertical direction

The vertical diffusion term is obtained by differencing the flux DS at the

W-node

Dggijk - Dg;ij,kfl
hw

3:ijk

Dy (V)" = (5.514)
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The flux is given by

/\#C( ;1])',16—&-1 B d#;k)

C
h3;ijk

D3 = (5.515)
5.6.4 Diffusion coefficients for turbulence variables
5.6.4.1 horizontal diffusion coefficients

The horizontal turbulent diffusion coefficients are the same as the one used
for scalar transport. They are obtained by vertical interpolation of A} and

MY, given by (5.437H(5.438) to respectively the UW and VW-nodes.

5.6.4.2 vertical diffusion coefficients

The vertical turbulent diffusion coefficients, used in the e-equation
and kl-equation (4.209)), are proportional to v, which is the one used in
the k-equation (4.204)). Different formulations for the parameterisation of
vy, are available and discussed in Section [£.4.3.3] No specific discretisation
procedures are required since all expressions are purely algebraic.

The following remarks are to be given

e Values are first obtained at the W-nodes and then interpolated at the
C-nodes.

e No value is calculated at the surface and the bottom.

e Since vy is calculated prior to the solution of the turbulent transport
equations, its value is obtained using values of k, € and [ at the old
time t".
5.6.5 Production and sink terms

All turbulence transport equations contain, besides the diffusion terms, three
terms on their right hand side. The first is the shear production term, the
second is the buoyancy term which is a production or sink term if N? < 0 or
N2 > 0 and the third is a dissipation (sink) term. Defining

N? = max(N?,0) + min(N? 0) = N7 — N? (5.516)
one has

P(k) = VTM2+)\TNE
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P(e)
P (ki)

and

S(kl)

The discretisation of M?2,

= Cla% (VT]\42 + C3E)\TNE>

1
_ éz(ElyTW n Eg)\TNE> (5.517)
= MN? +e
82
= 015035)\TN3_ + Czaz
1 .
- 3 (ZEgATNi + eok3/2W) (5.518)

N2, v and Mg is discussed in Section [5.3.12.2]

Production terms are taken explicit in time using values of all quantities at
time t". Sink terms are discretised quasi-implictly using ([5.476|):

S(kl) =

) knJrl
n
()\T]V+ +ée )F
) 6n—&-l 5ngn—i-l
Clsc3s>\TN+ on + Coe En

A N2 n+1 ni
1<E3T b (kl) \/kz_W)

kn €0 ln

2

(5.519)

5.6.6 Boundary conditions

5.6.6.1 surface boundary conditions

In analogy with the scalar case two Neumann and two Dirichlet type of
surface boundary conditions are available in the program.

1. Neumann condition with a prescribed flux F f N. 41 at the surface

Diiijn. 41 = F%‘,}NZH (5.520)

S

The flux at the first C-node below the surface is then determined by
interpolating the surface value and the calculated flux at the second
C-node below the surface

w %Z)%w c c
203N Foijn. 11+ Psain. Dsijn. 1

Dg-ijN =
o 2hgiiin. T M.
2 Fyiiva | Bsan AT Wy, — V)
2h3 N, + RSN, hggij,szl(Qh}SU;isz + hg;isz)
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5.6: Discretisation schemes for each of the available surface and bottom

boundary conditions for turbulent variables.

variable | equation | discretisation scheme
k 4.281 Dirichlet at the surface
€ 4.281 Dirichlet at the first W-node below the surface
l 4.281 Dirichlet at the first W-node below the surface
k 4.283)) | prescribed flux at the surface
€ 4.284)) | prescribed flux at the first C-node below the surface
k 4.351 Dirichlet at the bottom
€ 4.351 Dirichlet at the first W-node above the sea bed
l 4.351 Dirichlet at the first W-node above the sea bed
k 4.352) | prescribed flux at the bottom
€ 4.353) | prescribed flux at the first C-node above the sea bed
(5.521)
with
v, Vv = O (N = ) + (L= 0) (N, — ¥ )
(5.522)
2. Neumann using a prescribed flux F fUCNZ at the first C-node below the
surface
Diijn. = stleNz (5.523)
3. Dirichlet condition with a prescribed value ¢, v, at the surface
wij,NzH = ¢:;)ij,Nz+1 (5-524>
4. Dirichlet condition with a prescribed value ¢,y at the first W-node
below the surface
VYiin. = Vgiin., (5.525)
Several formulations of surface boundary conditions have been introduced

in Section .7.5l The discretisation scheme for each formulation is indicated
in Table (.61

It
those

is remarked that all turbulent diffusion coefficients are calculated using
values of k, € and [ which are located within the water column and not

at the surface itself so that (5.523)) and (5.525)) can be considered as realistic

conditions.
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5.6.6.2 bottom boundary conditions

In analogy with the scalar case two Neumann and two Dirichlet type of
bottom boundary conditions are available in the program.

1. Neumann condition with a prescribed flux F, bd’”“i at the bottom
DYy = Fpit (5.526)

The flux at the first C-node above the sea bed is then determined by
interpolating the bottom value and the calculated flux at the second
C-node above the sea bed

De - 2hgsio B’ + B Do
" 2h 50 + NS0
Qh?su;iszg;bi? hg;z’jl/\?“;;z?jQ( s — i)
2N 00 + M0 hS.iio(2h%50 + hS.i51)

(5.527)
with

Wy — ity = O, (VI — ) + (1= 0,) (Y — ) (5.528)

2. Neumann using a prescribed flux ngzjcl at the first C-node above the
bottom

D = Fois) (5.529)
3. Dirichlet condition with a prescribed value 1y, at the bottom

wijl - @ij,ljiﬂ (5.530)

4. Dirichlet condition with a prescribed value 9., at the first W-node
above the bottom

Vij2 = Ypijo (5.531)

Several formulations of bottom boundary conditions have been introduced

in Section [4.9.4] The discretisation scheme for each formulation is indicated
in Table (.6l



284 CHAPTER 5. NUMERICAL METHODS

5.6.6.3 lateral boundary conditions

The fluxes normal to an open boundary are calculated using the upwind
scheme. Applying the zero gradient condition one obtains

ew w uw o uw, W
Vi = WYiimrgr OF Frjn = Ui e (5.532)
ew w vw o 0w, W
Vije = Vijjke 8 Fogge = Vi i (5.533)

Advective fluxes normal to a closed (coastal) open boundary are set to
Z€ero.

5.6.7 Solution of the discretised equations for turbu-
lent transport variables

As for momentum, the discretised equations can be written in the tridiagonal
form (5.315]). Expressions for the matrix components are given below for the
case that no operator splitting is used. They are easily extended to the case
with operator splitting.

When a Neumann boundary condition is taken, no calculation is per-
formed at the surface or bottom itself. In case of a Dirichlet condition, the
surface (bottom) value of ¢ is determined by the boundary condition itself.
This means that the vertical index k& varies between k,.;, and k4. The
lower limit £,,;, equals 3 for a Dirichlet condition at the first W-node above
the bottom and 2 otherwise. Likewise k., equals N, — 1 for a Dirichlet
condition at the first W-node below the surface and N, otherwise.

For simplicity, the 7 and j indices are omitted.

1. Time derivative.

The contribution of the time derivative is given by
AL =0, By=1, C;=0, D;=qv" (5.534)
where kin < k < ks

2. Vertical advection.

The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

Az_ = —Qac;(l + fk:—l)
By = —bac, (1= fr1)
cy- =0
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Dy~

= (1= 02 (1 + S0 + (1= fi)ui™) (5.535)

Where kmm S k? S kmaxa

. Atwp_,
C, = ———
L 2h,

, fe= (1 - Q(rg))sk (5.536)

and s;jx, 1j), are defined by and .

The terms arising from the flux above the k-level, are

At
B.*
C.r
Dyt

=0
= Qacz'(l-i—fk)

where k,in < k < ke and

= OQCZ(l — fk)
= == 0 (14 fU™ + (1= fiuih)
(5.537)
~ Atwy
of = i, (5.538)

3. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

o, A
g vhg;kflhggk
i AN
By = O
h3;k—1h3;k
c- =0
ALY
d_ T;k— n;w n;w
D = —(1=0) - (W — ™) (5.539)
3;k—1""3:k

where k;, < k < k4 and kj, equals 2 for a Dirichlet condition at the
bottom and 3 otherwise.

The terms taken from the flux above the k-level, are

Al = 0
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Bl vAt)@ﬁ;
Rl
cH o= - v—fitﬁz
3;k" "3k
e
D= (—0) R ) (550)
3103k

where k., < k < ky, and k,, equals NN, for a Dirichlet condition at
the surface and N.-1 otherwise.

Sink terms.

Sk

;W

k

A7 =CY=D; =0, BJ= (5.541)

where kin < k < kpaz-

Other explicit terms.

All other terms are explicit. Their contributions can be written as
Di = AH(PP = A (0N = Ana(0") + Cor (")

U + Caa (0N + Do (")} + Dapa (7))
(5.542)

where ki < k < ks

Surface boundary conditions.
Contributions from the surface boundary conditions depends on the
type of condition as described in Section [5.6.6.1].

e Neumann condition with a prescribed surface flux F fﬁ; 41

0, AthS, v M.
h’g);Nz(Qhév;Nz + hg;Nz))h:ca;Nz—l
OuAthS § Al
B (2hE N+ B n))hSy.
Cy. = 0

s —
AN, =

s _
BNZ =
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At :
. = e (2F5
T 2hgy + hzca;Nz< e

° héu;Nzhg;Nz—l .

e Neumann using a prescribed flux F Sw ~. at the first C-node below
the surface

(5.544)

e Dirichlet condition with a prescribed value ¢y, at the surface
A?VZ+1 = CJSVZ-i-l = 07 Bf\fz—i-l = 17 D?VZ+1 = g;]Nz"l‘l (5545)

e Dirichlet condition with a prescribed value ¥y at the first W-
node below the surface

Ay, =C%, =0, By, =1, Dy =gy, (5.546)

7. Bottom boundary conditions.

Contributions from the bottom boundary conditions depends on the
type of condition as described in Section [5.6.6.2]

e Neumann condition with a prescribed bottom flux Fflw at the

bottom

A5 =0

Bb eﬂAthg,l)\?,;

i By (208, + h.0)hs.s

o 0, AthS Ay

P hga(2hg, + hs))h5,

At , R NS (157 — g
D; = —ﬁ<2Ffiw+(1—ev) = T’z(f?)c v )>
2h372 + h3,1 ’ h372h372

(5.547)

e Neumann using a prescribed flux F;plc at the first C-node above
the bottom

Ab=B=C5=0, Db=-—

(5.548)
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e Dirichlet condition with a prescribed value 1,7, at the bottom
Aj=Cy=0, Bj=1, D=1y, (5.549)

e Dirichlet condition with a prescribed value 1, at the first W-node
above the bottom

Ay=C=0, Bi=1, Di=4y, (5.550)

Discretisations on reduced grids

5.7.1 Discretised 1-D mode equations

1. To make the code compatible with the 3-D case which uses an Arakawa

C-grid, the model grid on which the equations are discretised, does not
not reduce to a single point but consists of 3 rows and columns (i.e.
nc=nr=3) of which the last column and the last row consist of dummy
land points (see Figure . This produces a computational overhead
since the same calculation is performed at each of the four wet C-nodes
and the two internal U and V velocity nodes.

2. Momentum equations

e The 1-D versions (4.109)4.110) are integrated in time without

operator and mode splitting using the formulations given in Sec-
tions}h.3.1.1jand [5.3.1.3| Firstly, “predicted” values are calculated

P — ym” 8(n+1

o n ~p . ny _ tin+1
o (5.551)

P — ™ " .
_ n ~p . ny _ tin+1

AL Ju" + 0, Dy (07) + (1 = 0,) D (V") — g By + F,
(5.552)

An implicit correction is added for the Coriolis force giving (u?,
vP) by equations ([5.10]). “Corrected” values are obtained by

n
h3;k

n+1
hS;k’

n
h3;k

n+1
h3;k

n+1

n+1 uP . _

u —_=

P (5.553)

where the surface slopes and the elevations used to calculate the
vertical grid spacing hgj,;l = (h + (") Aoy, are prescribed exter-
nally by expressions of the form (4.285)).
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e The vertical diffusion terms and coefficients are discretised using
the formulations given in Sections [5.3.11| and [5.3.12.2]

e Once the currents are updated, the depth-mean currents @ and ©
are evaluated (for user output only).

3. Scalar equations

e The transport equation for a scalar v is integrated in time without
operator splitting using the discretisation ({5.393)).

e The vertical diffusion term and coefficient are discretised as des-

cribed in Sections [(.5.5.3 and [5.5.6.2]

e Neumann and Dirichlet onditions can be applied as discussed in

Sections B.5.7.1H5.5.7.2

4. The turbulence equations are solved as in the 3-D case without advec-
tion and operator splitting.

5.7.2 Discretised depth-integrated equations

1. Momentum equations

e The surface elevation and depth-integrated currents are updated
by solving the 2-D momentum equations using the same discretisa-
tion procedures given in Sections 5.3 without the depth-integrated
baroclinic terms but with the same barotropic time step Ar.

e To make the code compatible with the 3-D case all “3-D” currents
are set to their depth-mean value

S
I

up = H=u
H=v

U/
v/

(5.554)

S]]
I

Uf =
2. Scalar equations

e Scalar transport is discretised in exactly the same way as in the
3-D case with the larger 3-D time step At.

e The vertical diffusion term is retained and discretised using
except that the upper and lower fluxes are located at the respec-
tively the surface and the bottom and therefore obtained by the
surface and bottom boundary conditions which must obviously be
of the Neumann type.

3. No turbulence transport equations need to be solved.
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5.8 Solution procedure

The general solution procedure can be summarised as follows
1. Initial time t = 0.
1.1 Obtain initial conditions for U, V', (, u, v, w, T', S, k, [ or £, and
quantities which are updated in time at open boundaries.
1.2 Initialise p, Or, Bs from the equation of state.
1.3 Evaluate the astronomical force at the initial time.
1.4 Initialise meteorological data.

1.5 Initialise open boundary data for the 2-D mode, 3-D mode, tem-
perature, salinity.

1.6 Initialise surface and bottom stress.
2. Predictor step at t =t = t" + A7 with n=0, ..., Ny — 1.

2.1 Update meteorological data (if needed).
2.2 Update p, Br, Bs from the equation of state.

2.3 Update all vertical diffusion coefficients. In case of a RANS model,
k, l or € are first updated at time ¢"*!.

2.4 Evaluate the components of the baroclinic pressure gradient.
2.5 Evaluate the horizontal diffusion coeflicients at different nodes.

2.6 Obtain u?, vP by solving the 3-D momentum equations.
3. Barotropic time steps t = t" + mA7T with m=1, ..., M.

3.1 Update meteorological data (if needed).

3.2 Solve 2-D continuity equation for (.

3.3 Update open boundary data for the 2-D mode (if needed).
3.4 Update astronomical force.

3.5 Update U, V' by solving the 2-D momentum equations.
3.6 Update the time-averaged transports Uy, V5.

4. Corrector step at t = t""! = t" + At with n=1, ..., Nyy.

4.1 3-D mode
4.1.1 Update open boundary data (if needed).
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4.1.2 Apply open boundary conditions.

4.1.3 Apply filter correction to obtain u"*!, v+,
4.1.4 Evaluate filtered currents uy, vy.

4.1.5 Solve 3-D baroclinic continuity equation for w.
4.1.6 Update physical vertical current.

4.1.7 Update bottom and surface stress (if needed).

4.2 Update temperature at time t"+!.

4.2.1 Update open boundary data (if needed).
4.2.2 Apply open boundary conditions.

4.2.3 Evaluate solar irradiance.

4.2.4 Evaluate surface (non-solar) heat fluxes.
4.2.5 Solve temperature equation.

4.3 Update salinity at time ¢"*.
4.3.1 Update open boundary data (if needed).

4.3.2 Apply open boundary conditions.
4.3.3 Solve salinity equation.

Note that

e Some of the previous steps are only conditionally performed, depending
on the setting of model switches. For example, the temperature equa-
tion is only updated when iopt_temp=2, the astronomical tidal force is
only included if iopt_astro_tide=1, . ...

e Update of surface or open boundary forcing data depends on the set-
tings of the tlims attribute, discussed in Section [14.7.2] of the User
Manual.
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