
Chapter 5

Numerical methods

5.1 Introduction

The numerical methods described in this chapter are based to a large extent
upon previous work described in the COHERENS V1 manual (Luyten et al.,
1999).

Conservative finite differences (equivalent to a finite volume technique for
the Cartesian mesh) are used to discretise the mathematical model in space.
The grid chosen for horizontal discretisation is the well known Arakawa
“C” grid (Mesinger & Arakawa, 1976) which staggers the currents and pres-
sure/elevation nodes to give a good representation of the crucial gravity waves
and provides simple representations of open and coastal boundaries. As dis-
cussed in Section 4.1 the model equations are solved on a rectangular or
curvilinear grid in the horizontal and a σ- or extended σ-coordinate grid in
the vertical, whereby varying surface and bottom boundaries are transformed
into constant surfaces. This provides for accurate representation of surface
and bottom boundary processes. It also results in an equal number of cells
in each vertical water column.

Two options are available to solve the hydrodynamic equations. The orig-
inal implementation in COHERENS used the mode-splitting technique as in
the model of Blumberg & Mellor (1987) to solve the momentum equations.
This method consists in solving the depth-integrated momentum and conti-
nuity equations for the “external” or barotropic mode with a small time step
to satisfy the stringent CFL stability criterium for surface gravity waves,
and the 3-D momentum and scalar transport equations for the “internal” or
“baroclinic” mode with a larger time step. A “predictor” and a “corrector”
step are applied for the horizontal momentum equations to satisfy the basic
requirement that the depth-integrated currents obtained from the the 2-D
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and 3-D mode equations, have identical values.
Recently, the possibility to solve the momentum equations semi-implicitly

as in the model of Chen (2003), based on the original work of Casulli & Cheng
(1992) was implemented. With this method, there is no longer need to solve
the depth-integrated momentum equations. The stringent CFL stability cri-
terium is relaxed by treating the terms that provoke the barotropic mode
in an implicit manner. After an explicit “predictor” step, velocities are cor-
rected with the implicit free surface correction in the “corrector” step. In this
method, the free surface correction follows from the inversion of the elliptic
free surface correction equation obtained from the 2-D continuity equation.

Much effort has been made to implement suitable schemes for the advec-
tion of momentum and scalars. A variety of schemes are available from the lit-
erature, e.g. second and higher order central and upwind schemes (see Hirsch,
1990, for a review), Flux Corrected Transport (FCT; Boris & Book, 1979),
Total Variation Diminishing (TVD; Roe, 1986; Sweby, 1984), Quadratic Up-
stream Interpolation for Convective Kinematics (QUICK; Leonard, 1979),
Second Order Moments (SOM; Prather, 1986; Hofmann & Maqueda, 2006),
Piecewise Parabolic Method (PPM; Colella & Woodward, 1984; James, 1996).
Implementing different schemes within the same model code is a tedious task
since most higher order schemes impose a coupling between space and time
discretisation. The basic choice in the program will therefore be limited to
the upwind and the TVD scheme to reduce the programming and compu-
tational overhead. The latter scheme is implemented with the symmetrical
operator splitting method for time integration and can be considered as a
useful tool for the simulation of frontal structures and areas with strong cur-
rent gradients. The upwind scheme, on the other hand, is only first order
accurate and therefore more diffusive, and should be used if CPU time is
considered of more importance than accuracy.

The following additional issues are noted:

• When the mode-splitting method is used, scalar quantities are advected
with a “filtered” velocity (uf ,vf ) derived from the “corrected” baro-
clinic currents and the depth-integrated current averaged over the in-
ternal time step (Deleersnijder, 1993).

• Sink terms are discretised explicitly in time for cell-centered scalars
to make the scheme more conservative, whereas a quasi-implicit for-
mulation is implemented for turbulence transport to ensure positivity
(Patankar, 1980).

This chapter is organised as follows:
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• The model grid, the grid indexing system and notational conventions
are described in Section 5.2.

• The solution of the momentum equations is presented in Section 5.3.

• The scalar transport equations are discussed in Section 5.5.

• Numerical aspects of the turbulence module are given in Section 5.6.

• The discretisations for one-dimensional (water column) and two-dimensional
(depth-averaged) applications are discussed in Section 5.7.

• The general solution procedure is summarised in Section 5.8.

5.2 Model grid and discretisations

5.2.1 Grid nodes and indexing system

Figure 5.1 shows the horizontal layout of the C-grid domain as it appears in
curvilinear coordinates (ξ1, ξ2). A normalisation is applied so that ∆ξ1=∆ξ2=1.
For convenience, the notations X and Y will be used for ξ1 and ξ2. It is re-
marked that X and Y do not refer to Cartesian axes in general. The following
nodes can be distinguished:

• C-nodes (empty circles): located at the centers of the grid cells, used
for 2-D and 3-D scalar quantitities (elevations, water depths, . . . ) and
wind components

• U-nodes (horizontal bars): at the centers of the left (West) and right
(East) cell faces, used for the X-components of vectors except the sur-
face wind (transports, depth-mean currents, bottom stress, ...)

• V-nodes (vertical bars): at the centers of the lower (South) and upper
(North) cell faces, used for the Y-components of vectors except the
surface wind (transports, depth-mean currents, bottom stress, ...)

• UV-nodes (solid circles): at the corners of the grid cells, used for the
horizontal coordinate arrays which determine the geographical location
of the grid

Each horizontal grid cell has an index, generally denoted by ‘i’, in the X-
direction between 1 and nc and an index (‘j’) in the Y-direction between 1
and nr. The indices refer to the position of a variable at its “natural” node
(C-, U-, V-, UV-node). This is illustrated in Figure 5.2.
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Figure 5.1: Layout of the (global) computational grid in the horizontal.

As shown in Figure 5.1, the last column (to the East) and the last row (to
the North) are open ended. In this way the domain contains the same number
of C-, U-, V- and UV-nodes. This was not implemented in COHERENS V1
but introduced in the new version to allow a more efficient domain decom-
position in case of a parallel application. The drawback is that the C-node
grid points with X-index nc or Y-index nr have to be declared as spurious
dry cells. This means in practice that, whereas the computational size of the
domain is nc×nr, the physical size is (nc-1)×(nr-1) for C-node, nc×(nr-1) for
U-node, (nc-1)×nr for V-node and nc×nr for UV-node quantities.

In analogy with the horizontal directions, a staggered grid is used in the
vertical as well. The water column is divided into nz layers. The layers,
which in transformed vertical coordinates have equal sizes, are illustrated in
Figure 5.3. The previous C-nodes are vertically located at the midst of each
layer. A new type of node, the W-node, is introduced located at the layer
itself, i.e. vertically between the C-nodes and at the bottom and the surface.



5.2. MODEL GRID AND DISCRETISATIONS 177

Horizontal

U(i,j) U(i+1,j)

V(i,j+1)

V(i,j)

C(i,j)

UV(i,j) UV(i+1,j)

UV(i,j+1) UV(i+1,j+1)

Figure 5.2: Grid indexing in the horizontal plane.

The vertical position of a 3-D model variable is determined by the vertical
(Z-)index (“k”) which varies between 1 and nz for C-node and between 1 and
nz+1 for W-node quantities.

The grid indexing system for the full 3-D mode is shown in Figure 5.4.
Combining horizontal and vertical nodes, new types of “combined” nodes
arise. The following nodal types are considered in the program:

• C-nodes: at the center of a 3-D grid cell

• U-nodes: at the center of a West/East lateral face

• V-nodes: at the center of a South/North lateral face

• UV-nodes: along the intersection lines of the lateral faces horizontally,
halfway between the lower and upper surface vertically

• W-nodes: at the centers of the lower and upper boundary faces

• UW-nodes: as the U-nodes horizontally, as the W-nodes vertically

• VW-nodes: as the V-nodes horizontally, as the W-nodes vertically
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Figure 5.3: Layout of the computational grid in the vertical.

• UVW-nodes: at the corners of a 3-D grid cell (as UV-nodes horizontally
and as W-nodes vertically)

The W-nodes are used for the (transformed) vertical current ω and for tur-
bulence variables (k, ε, l, vertical diffusion coefficients and related variables).
The UW-, VW- and UVW-nodes are only needed by the program for local
internal variables.

The lower bound of all grid indices is 1, the upper boundary depends
on the nodal type and on whether it is taken along the computational or
physical domain. A complete listing is given in Table 5.1.

5.2.2 Open boundaries

Open boundaries are defined as locations on the model grid where the solution
of the discretised model equations requires values of the transport variable(s)
located outside the physical domain. Open boundary conditions have to be
specified at those locations. The program distinguishes four types of open
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Grid indexing system (3−D)

UV(i+1,j+1,k)UV(i,j+1,k)

UVW(i+1,j+1,k)
UV(i+1,j,k)

Figure 5.4: Grid indexing in three-dimensional space.

boundaries:

• U-open boundaries at U-velocity nodes needed to determine the values
of U ,u and the advective/diffusive fluxes of scalars in the X-direction

• V-open boundaries at V-velocity nodes needed to determine the values
of V ,v and the advective/diffusive fluxes of scalars in the Y-direction

• X-open boundaries at UV-nodes needed to determine the cross-stream
advective/diffusive fluxes of v and V

• Y-open boundaries at UV-nodes needed to determine the cross-stream
advective/diffusive fluxes of u and U

5.2.3 Conventions

A quantity taken at a grid point on its natural node is written as Qij for a
2-D or Qijk for a 3-D variable. To simplify the notations, the indices i, j, k
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Table 5.1: Upper bounds for the grid indices (i,j,k) as function of nodal type.

Node Computational Physical
X-index Y-index Z-index X-index Y-index Z-index

C nc nr nz nc-1 nr-1 nz
U nc nr nz nc nr-1 nz
V nc nr nz nc-1 nr nz
UV nc nr nz nc nr nz
W nc nr nz+1 nc-1 nr-1 nz+1
UW nc nr nz+1 nc nr-1 nz+1
VW nc nr nz+1 nc-1 nr nz+1
UVW nc nr nz+1 nc nr nz+1

are omitted if no confusion is possible. This means e.g. that Qi,j+1,k (3-D
quantity) can be written as Qj+1 or that Qi−1 (2-D quantity) is the same as
Qi−1,j.

If a quantity needs to be evaluated at a point, different from its natural
position, its value is determined by taking an average over the neighbouring
points. This is indicated by one of the superscripts c, u, v, w, . . . referring to
the point at which the quantity is interpolated. The program allows to use
uniform averaging with equal weight factors or non-uniform averaging with
unequal weights (see Section 10.2). To illustrate the convention, uniform av-
eraging is assumed here for simplicity. The Coriolis terms in the momentum
equations require a 4-point interpolation of the u and v velocities:

uvijk =
1

4
(uijk + ui,j−1,k + ui+1,jk + ui+1,j−1,k)

vuijk =
1

4
(vijk + vi−1,jk + vi,j+1,k + vi−1,j+1,k)

(5.1)

The next example is a centered quantity Q evaluated at respectively the U-,
V-, W-, UW- and VW-node with the same index values:

Qu
ijk =

1

2
(Qi−1,jk +Qijk)

Qv
ijk =

1

2
(Qi,j−1,k +Qijk)

Qw
ijk =

1

2
(Qij,k−1 +Qijk)

Quw
ijk =

1

4
(Qij,k−1 +Qijk +Qi−1,j,k−1 +Qi−1,j,k)



5.2. MODEL GRID AND DISCRETISATIONS 181

Qvw
ijk =

1

4
(Qij,k−1 +Qijk +Qi,j−1,k−1 +Qi,j−1,k) (5.2)

A double index notation of the form i1 : i2 or j1 : j2 is sometimes in-
troduced in expressions related to open boundary conditions, where the first
index i1 (j1) is used at western (southern) boundaries and the second index
i2 (j2) at eastern (northern) boundaries, such as in the following example
expressions

ui+1:i−1,jk , vi,j:j−1,k

5.2.4 Space discretisation

The grid is defined by specifying the following three arrays:

• the x1-coordinates (in Cartesian or spherical coordinates) x1;ij of the
cell corners (represented by the 2-D array gxcoordglb(nc,nr))

• the x2-coordinates (in Cartesian or spherical coordinates) x2;ij of the
cell corners (represented by the 2-D array gycoordglb(nc,nr))

• the σ-coordinates σijk of the W-nodes (represented by the array
gscoordglb(nc,nr,nz+1)). Note that σij1 = 0 (bottom) and σij,Nz+1 = 1
(surface).

As discussed in Sections 4.1.2-4.1.4, the grid spacings ∆x1, ∆x2, ∆z are set
equal to respectively the metric coefficients h1, h2, h3 by normalisation. The
latter notation will be used for convenience in the following.

Spatial differences in the x1-, x2- or vertical direction are represented
respectively by the operators ∆x, ∆y, ∆z. The superscript c, u, v, w, uw, vw

or uv indicates the grid (nodal) location of the result. This is illustrated with
the following examples (where Q represents a centered quantity in the third
example):

∆c
xuijk = ui+1,j,k − uijk

∆v
yu

c
ijk =

1

2
(uijk + ui+1,jk − ui,j−1,k − ui+1,j−1,k)

∆zQijk = Qijk −Qij,k−1

∆c
yVij = Vi,j+1 − Vij (5.3)

Grid spacings are “naturally” evaluated at the cell centre. Conforming the
previous rules interpolated values at other grid locations are indicated by a
superscript, e.g. hu1;ij, h

w
3;ijk. Note that the grid indices on the left hand side

of the expressions (5.3) refer to the destination node and not the source node
of the interpolation. An overview of all subscript and superscript notations,
used in this chapter, is given in Table 5.2.
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Table 5.2: Subscript and superscript notation used in the numerical discreti-
sation formulae.

Type Purpose
subscripts
i X-index of the variable on the model grid (between 1 and either

nc-1 or nc)
j Y-index of the variable on the model grid (between 1 and either

nr-1 or nr)
k vertical index of the variable on the model grid (between 1 and

either nz or nz+1)
i1:i2 expression used in the spatial discretisation of open boundary

conditions, whereby the first index is taken at the western and
the second index at the eastern boundary

j1:j2 expression used in the spatial discretisation of open boundary
conditions, whereby the first index is taken at the southern and
the second index at the northern boundary

superscripts
c quantity evaluated or interpolated at the cell centre
u quantity evaluated or interpolated at the U-node
v quantity evaluated or interpolated at the V-node
uv quantity evaluated or interpolated at the UV-node
w quantity evaluated or interpolated at the W-node
uw quantity evaluated or interpolated at the UW-node
vw quantity evaluated or interpolated at the VW-node
n quantity evaluated at the old baroclinic time tn

n+ 1 quantity evaluated at the new baroclinic time tn+1

m quantity evaluated at the old barotropic time tm

m+ 1 quantity evaluated at the new barotropic time tm+1

it quantity evaluated at the previous iteration level
it+ 1 quantity evaluated at the next iteration level
p “predicted” value
f “filtered” value
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5.2.5 Time discretisation

The time discretisation of the model equations is summarised below. A
detailed description is given in the sections below.

• In case a mode-splitting technique is used (Blumberg & Mellor, 1987),
separate time steps are taken for the 2-D “external” barotropic equa-
tions (∆τ) and the “internal” baroclinic equations (∆t). The 2-D time
step ∆τ has to be small enough to satisfy the Courant-Friedrichs-Lewy
(CFL) criterion (see equation (5.4) below). The 3-D time step is a
multiple, Mt, of ∆τ (typically of the order of 10–20) and the model
is integrated forward in time for Nt baroclinic time steps (equal to
NtMt = Mtot barotropic time steps). From stability analysis for linear
surface gravity waves

∆τ ≤ ∆hmin

2
√
ghmax

(5.4)

and

∆t ≤ ∆hmin

2
√
g′hmax

(5.5)

where ∆hmin = min(h1, h2) is the minimum horizontal grid spacing,
g′ = g∆ρ/ρ0 the reduced gravity, hmax the maximum water depth and
∆ρ a typical value for the vertical density difference. Since g′ � g
the second condition is less constraining than the first one. A more
stringent condition for the 3-D mode, imposed by the explicit schemes
for horizontal advection, is that the horizontal distance travelled by a
fluid element during the internal time step ∆t, must be smaller than
the grid spacing, or (u∆t

h1
,
v∆t

h2

)
≤ 1 (5.6)

• The semi-implicit hydrodynamic scheme only uses one (3-D) timestep.
In this case, Mt = 1 and ∆τ = ∆t. Because of the implicit treatment
of the free surface wave, there is no need for the 2-D CFL time step
restriction (5.4) for stability. The convective CFL criterion, eq. (5.6),
still needs to be satisfied in all cells at all times.

• All horizontal derivatives are evaluated explicitly while vertical diffu-
sion is computed fully implicitly and vertical advection quasi-implicitly.

• A predictor-corrector method is used to solve the horizontal momentum
equations (4.61)–(4.62). This satisfies the requirement (Blumberg &
Mellor, 1987) that, when using a mode-splitting technique, the currents
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in the 3-D equations should have the same depth integral as the ones
obtained from the 2-D depth-integrated equations.

• A quasi-implicit method is implemented for the Coriolis terms.

• Time integration is performed with the operator splitting method in
conjunction with the TVD scheme for advection, whereas a simpler
forward scheme is considered when advection is discretised with the
upwind scheme.

• The sink terms in the momentum and turbulent transport equations,
representing e.g. the bottom stress in the momentum equation or the
dissipation rate ε and work against stable density gradients in e.g. the
k-equation (4.204), are discretised quasi-implicitly to ensure positivity
(Patankar, 1980). The sink terms in all other transport equations will
be taken explicitly for reasons of conservation.

• The time step at which a quantity is evaluated in the discretised equa-
tions, is represented by one of the following superscripts (see also Ta-
ble 5.2):

- n: 3-D quantity at the old baroclinic time level tn = n∆t

- n+1: 3-D quantity at the new baroclinic time level tn+1 = (n+ 1)∆t

- m: 2-D quantity at the old barotropic time level tm = n∆t+m∆τ

- m + 1: 2-D quantity at the new barotropic time level tm+1 =
n∆t+ (m+ 1)∆τ

- p: horizontal current at the “predicted” time step

The superscript is omitted if no confusion is possible. If multiple super-
scripts appear separated by semicolons, the last superscript represents
the spatial node, the one before last the time level. For example, un;c

denotes the value of u at time level n and node “C”. In case of multiple
subscripts separated by semicolons, the last one(s) is (are) the spatial
index (indices).

• The time step notations are the same in the implicit case except that
there are no intermediate barotropic time steps. However, there is now
a possibility to perform the hydrodynamic solution more than once
every time step. Particularly in case of the use of the semi-implicit free
surface correction method, the accuracy can be enhanced by applying
extra iterations. The values at these extra iteration levels are addressed
with the following superscrips (see also Table 5.2):
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- it: quantity at the previous iteration level

- it+ 1: quantity at the present iteration level

5.3 Momentum equations

5.3.1 General procedure for the explicit case

The 3-D momentum equations are solved by a predictor-corrector method in
which the sequence of operations for each baroclinic time step is as follows:

1. An initial (predictor) estimate of the currents up, vp is calculated from
the equations of three-dimensional motion.

2. An implicit correction is added to the predicted values for the Coriolis
terms.

3. The 2-D depth-integrated equations of continuity and momentum are
solved for ζ, U and V . This involves Mt integrations in time.

4. An implicit correction is added for the Coriolis terms at each barotropic
time step.

5. The 3-D horizontal current up and vp are corrected yielding un+1 and
vn+1 by adjusting up and vp to ensure that the integrated currents
obtained from the 2-D and 3-D momentum equations are identical.

6. The transformed and physical vertical current are obtained by solving
(4.102) and (4.73).

Table 5.3: Parameters and variables used in the numerical description.Global and
local FORTRAN names refer to the variables as defined on respectively the global
and local (parallel) grid.

SymbolGlobal name Local name Purpose
Nx nc ncloc number of grid cells in the X-direction
Ny nr nrloc number of grid cells in the Y-direction
Nz nz nz number of grid cells in the vertical direction
h1 — delxatc grid spacing in the X-direction at the cell cen-

tre
h2 — delyatc grid spacing in the Y-direction at the cell cen-

tre
(Continued)
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Table 5.3: Continued

h3 — — grid spacing in the vertical direction at the
cell centre (calculated as H∆σk)

∆σk — delsatc grid spacing in the vertical σ-space at the cell
centre

∆τ delt2d delt2d (barotropic or external) time step for the 2-D
mode equations. In case of an implicit scheme
∆τ = ∆t.

∆t delt3d — (baroclinic or internal) time step used for the
update of 3-D momentum (3-D mode) and all
scalar quantities

Mt ic3d ic3d number of 2-D (barotropic) time step within
one 3-D (baroclinic) time step (= ∆t/∆τ).
In case of an implicit scheme Mt=1.

Ntot — — total number of 3-D time steps used in the
simulation

Mtot nstep nstep total number of 2-D time steps used in the
simulation (= MtNtot)

θc theta cor theta cor implicity factor for the Coriolis force with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 0.5.

θa theta vadv theta vadv implicity factor for vertical advection with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 0.501.

θv theta vdif theta vdif implicity factor for vertical diffusion with a
value between 0 (explicit) and 1 (implicit).
The default value, currently used in the pro-
gram, is 1.

itmax maxitsimp maxitsimp maximum allowed number of outer iterations
for the implicit scheme

εimp dzetaresid conv dzetaresid conv convergence limit for the free surface correc-
tion as used in (5.42)

(Continued)
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Table 5.3: Continued

Ω(r) — — weight function between the upwind and
Lax-Wendroff (central) fluxes used in the
evaluation of the horizontal (vertical) ad-
vective fluxes. Its value depends on the
value of the advective switches iopt adv 3D
(3-D currents), iopt adv 2D (2-D currents),
iopt adv scal (scalars) and iopt adv turb (tur-
bulent variables) as given by (5.50)–(5.53).

uf — ufvel X-component of the “filtered” advective ve-
locity, used for the advection of scalar quan-
tities

vf — vfvel Y-component of the “filtered” advective ve-
locity, used for the advection of scalar quan-
tities

Uf — udfvel value of the depth-integrated current U aver-
aged over one baroclinic time step, as given
by (5.22)

Vf — vdfvel value of the depth-integrated current V aver-
aged over one baroclinic time step, as given
by (5.22)

5.3.1.1 predictor step

1. Firstly, the following terms are evaluated using values of currents, T ,
S at the old time step (tn):

• the density ρ from the equation of state (see Section 4.2.3) if
iopt dens>0

• the coefficients of vertical diffusion if iopt vdif coef>0

• the baroclinic pressure gradient (see Section 5.3.13) if iopt dens grad>0

• the coeffficients of horizontal diffusion if iopt hdif coef=2 (Smagorin-
sky scheme, see Section 5.3.12.1)

2. The 3-D momentum equations (4.61) and (4.62) are integrated in time
at each (internal) grid point (i,j,k). Their discretised forms without
operator splitting, is given by

ũp − un

∆t
= fvn −Ah1(un)−Ah2(un)− vn;u

hu1h
u
2

(un∆u
yh

uv
1 − vn;u∆u

xh
c
2)
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−θaAv(ũp)− (1− θa)Av(un) + θvDmv(ũp) + (1− θv)Dmv(un)

−g∆u
xζ

n

hu1
− ∆u

xPa
ρ0hu1

+ F b;n
1 + F t;n+1

1 +Dmh1(τn11) +Dmh2(τn12)

(5.7)

ṽp − vn

∆t
= −fun −Ah1(vn)−Ah2(vn)− un;v

hv1h
v
2

(vn∆v
xh

uv
2 − un;v∆v

yh
c
1)

−θaAv(ṽp)− (1− θa)Av(vn) + θvDmv(ṽp) + (1− θv)Dmv(vn)

−g
∆v
yζ
n

hv2
−

∆v
yPa

ρ0hv2
+ F b;n

2 + F t;n+1
2 +Dmh1(τn21) +Dmh2(τn22)

(5.8)

where (ũp, ṽp) are the “predicted” currents before implicit Coriolis
correction, f = 2Ω sinφ is the Coriolis frequency, Ahi, Av are the ho-
rizontal and vertical advection operators defined by (4.64)–(4.66) and
Dmhi, Dmv the horizontal and vertical diffusion operators defined by
(4.67)–(4.69).

3. The predictor currents are obtained by adding an implicit Coriolis cor-
rection:

up = ũp +
fθc∆t(∆v

u − fθc∆t∆u)

1 + (fθc∆t)2

vp = ṽp − fθc∆t(∆u
v + fθc∆t∆v)

1 + (fθc∆t)2
(5.9)

where
∆u = ũp − un , ∆v = ṽp − vn (5.10)

For details see Appendix C.

4. The “predicted” values for the depth-integrated current are obtained
by integrating up and vp over the vertical

Up =
Nz∑
k=1

upkh
n;u
3;k , V p =

Nz∑
k=1

vpkh
n;v
3;k (5.11)

The following features are to be noted:

• The forward (Euler) scheme for time discretisation in (5.7)–(5.8) is
replaced by the operator splitting method, discussed in Section 5.3.3.2,
in case the TVD scheme is applied for the advective terms.
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• By default the Coriolis terms are evaluated semi-implicitly (θc=0.5).
The implicity factors for vertical advection θa and diffusion θv are set
to respectively 0.5, 0.501 (semi-implicit) and 1 (fully implicit method).
This is further discussed in Section 5.3.3.1.

• The equations are solved at the predictor step with application of sur-
face and bottom boundary conditions, but without open boundary con-
ditions.

5.3.1.2 depth-integrated equations

1. The depth-integrated baroclinic advective and diffusive terms (4.98)–
(4.101) are updated using values of the baroclinic current at the old
time level tn.

2. The astronomical tidal force is updated at the new time level tn+1

(Section 5.3.14) if iopt astro tide=1.

3. The 2-D continuity equation (4.85) for the surface elevation ζ and
the depth-integrated momentum equations (4.86)–(4.87) for U , V are
solved at each (internal) grid point (i,j) for Mt = ∆t/∆τ barotropic
time steps

ζm+1 − ζm

∆τ
= − 1

h1h2

(
∆c
x(h

u
2U

m) + ∆c
y(h

v
1V

m)
)

(5.12)

Ũm+1 − Um

∆τ
+

kub2
Hm;u

Ũm+1 = fV m;u −Ah1(Um)−Ah2(Um)

− v
m;u

hu1h
u
2

(Um∆u
yh

uv
1 −Hm+1;uvm;u∆u

xh
c
2)−

gHm+1;u

hu1
∆u
xζ

m+1

−H
m+1;u

ρ0hu1
∆u
xPa + F

b;n

1 +Hm+1;uF t;m+1
1 + τus1 − kub1(u

p
b −

Up

Hn;u
)

+Dmh1(τ11)m +Dmh2(τ12)m − δA
n

h1 + δD
n

h1 (5.13)

Ṽ m+1 − V m

∆τ
+

kvb2
Hm;v

Ṽ m+1 = −fUm;v −Ah1(V m)−Ah2(V m)

− u
m;v

hv1h
v
2

(V m∆v
xh

uv
2 −Hm+1;vum;v∆v

yh
c
1)−

gHm+1;v

hv2
∆v
yζ
m+1

−H
m+1;v

ρ0hv2
∆v
yPa + F

b;n

2 +Hm+1;vF t;m+1
2 + τ vs2 − kvb1(v

p
b −

V p

Hn;v
)
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+Dmh1(τ21)m +Dmh2(τ22)m − δA
n

h2 + δD
n

h2 (5.14)

where
(u, v) = (U/Hu, V/Hv) (5.15)

are the depth-mean currents and Ahi, Dmhi are the 2-D advective and
diffusion operators defined by (4.90)–(4.93).

A quasi-implicit formulation is used for the bottom stress in the U -
equation of the form

τub1 = kub1

(
upb −

Up

Hn;u

)
+ kub2

Ũm+1

Hm;u
(5.16)

The friction velocities kb1 and kb2 depend on the formulation for the
bottom stress (see equations (4.337)–(4.341)).

no bottom stress : kub1 = kub2 = 0
linear bottom stress : kub1 = 0 , kub2 = klin

3-D quadratic law : kub1 = kub2 = Cu
db

(
(unb )2 + (vn;ub )2

)1/2
2-D quadratic law : kub1 = 0 , kub2 = Cu

db

(
(um)2 + (vm;u)2

)1/2
(5.17)

The bottom drag coefficient Cu
db is calculated from (4.343), giving

Cu
db;ij = κ2

[
ln
(

max(0.5hu3;ij1/z
u
0;ij), ξmin

)]−2
(5.18)

or by (4.344)

Cu
db;ij = κ2

[
ln
(

max(Hu
ij/(ez

u
0;ij)), ξmin

)]−2
(5.19)

or by interpolating an externally supplied C-node value at the U-node.
Note that the discretisations guarantee that Cdb remains finite, in case
of a drying condition (i.e. when zr → z0).

The bottom stress at the V-node is treated similarly.

4. An implicit correction is applied for the Coriolis terms:

Um+1 = Ũm+1 +
fθc∆τ(∆V u − fθc∆τ∆U)

1 + (fθc∆τ)2

V m+1 = Ṽ m+1 − fθc∆τ(∆U v + fθc∆τ∆V )

1 + (fθc∆τ)2
(5.20)

where
∆U = Ũm+1 − Um , ∆V = Ṽ m+1 − V m (5.21)

For details see Appendix C.
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5. The 2-D open boundary conditions are applied (see Section 5.3.16.1).

6. After solving (5.12)–(5.14) Mt times, the solutions are averaged over
the baroclinic time step, giving

Uf =
1

Mt

Mt∑
m=1

Um , Vf =
1

Mt

Mt∑
m=1

V m (5.22)

where Mt = ∆t/∆τ is the number of barotropic time steps.

5.3.1.3 corrector step

1. Open boundary conditions are applied for the baroclinic part

(δu, δv) =
(
un+1 − un+1, vn+1 − vn+1

)
(5.23)

2. The predicted values up, vp of the horizontal current are corrected to
ensure that the depth-integrated currents obtained from the 2-D mode
equations (5.13)–(5.14) are identical to the depth-integrated values of
the 3-D current. The corrected values are then given by

un+1 =
Hn;uup + Un+1 − Up

Hn+1;u
(5.24)

vn+1 =
Hn;vvp + V n+1 − V p

Hn+1;v
(5.25)

3. The “filtered” advective velocities uf and vf , used for the advection of
scalar quantities (see Section 5.5), are obtained by adding the depth-
integrated current averaged over the baroclinic time step to the baro-
clinic part of the 3-D corrected current:

un+1
f =

Hn;uup + Uf − Up

Hn+1;u
(5.26)

vn+1
f =

Hn;vvp + Vf − V p

Hn+1;v
(5.27)

For details of the procedures see Ruddick (1995).
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5.3.1.4 vertical current

The transformed vertical current ω is obtained by integrating the “baroclinic”
continuity equation (4.102) from the bottom. Omitting the i- and j-indices
this gives

ωn+1
1 = 0

Fk =
1

hc1h
c
2

[
∆c
x

(
hu2h

n+1;u
3;k (un+1

k − un+1
k )

)
+ ∆c

y

(
hv1h

n+1;v
3;k (vn+1

k − vn+1
k )

)]
+

Un+1;c

hc1
∆c
x

( hn+1;u
3;k

Hn+1;u

)
+
V n+1;c

hc2
∆c
y

( hn+1;v
3;k

Hn+1;v

)
ωn+1
k+1 = ωn+1

k −Fk for 2 ≤ k ≤ Nz

ωn+1
Nz+1 = 0 (5.28)

The procedure guarantees that ωn+1
Nz+1 = 0.

The physical vertical current w is computed at the C-nodes from (4.73):

wn+1
k =

2(Hn+1;czn+1;c
k −Hn;czn;ck )

∆t(Hn;c +Hn+1;c)

+
1

hc1h
c
2h

n+1;c
3;k

[
∆c
x

(
hu2h

n+1;u
3;k un+1

k zn+1;u
k

)
+ ∆c

y

(
hv1h

n+1;v
3;k vn+1

k zn+1;v
k

)]
+

∆c
z(z

n+1;w
k ωn+1

k )

hn+1;c
3;k

(5.29)

where

zn+1;c
k = Hn+1;cσck − hc (5.30)

and similar expressions at other nodes or time levels.

5.3.2 General procedure for the implicit case

With the implicit method, there is no longer need to solve the depth-integrated
momentum equations (unless a 2-D grid has been selected). The stringent
CFL stability criterium is relaxed by treating the terms that provoke the
barotropic mode in an implicit manner. Difference with the previous explicit
version is that the surface slope term is taken at the new time level. Ho-
rizontal advection and diffusion are calculated, as before, at the old time
level.

After an explicit “predictor” step, velocities are corrected with the im-
plicit free surface correction in the “corrector” step. In this method, the free



5.3. MOMENTUM EQUATIONS 193

surface correction follows from the inversion of the elliptic free surface cor-
rection equation obtained from the 2-D continuity equation. Because of the
non-linear dependency of the equations on the free surface height through
the h3-term, an iterative scheme has been implemented in addition.

1. At the first iteration ζn+1,1 = ζn and hn+1,1
3 = (h+ ζn)∆σ.

2. The momentum equations are solved at the predictor step using the
latest values for h3 and ζ:

hn+1,it
3 ũp − hn3un

hn3∆t
= fvn −Ah1(un)−Ah2(un)

− vn;u

hu1h
u
2

(un∆u
yh

uv
1 − vn;u∆u

xh
c
2)− θaAv(ũp)− (1− θa)Av(un)

+θvDmv(ũp) + (1− θv)Dmv(un)− gh
n+1,it
3

hn3

∆u
xζ

n+1,it

hu1

−∆u
xPa
ρ0hu1

+ F b;n
1 + F t;n+1

1 +Dmh1(τn11) +Dmh2(τn12) (5.31)

1

hn3

hn+1,it
3 ṽp − hn3vn

∆t
= −fun −Ah1(vn)−Ah2(vn)

− un;v

hv1h
v
2

(vn∆v
xh

uv
2 − un;v∆v

yh
c
1)− θaAv(ṽp)− (1− θa)Av(vn)

+θvDmv(ṽp) + (1− θv)Dmv(vn)− gh
n+1,it
3

hn3

∆v
yζ
n+1,it

hv2

−
∆v
yPa

ρ0hv2
+ F b;n

2 + F t;n+1
2 +Dmh1(τn21) +Dmh2(τn22) (5.32)

where the surface slope is taken at the previous iteration level. The
predicted currents (up, vp) are obtained from (ũp, ṽp) after applying the
implicit correction for the Coriolis terms, given by (5.9)–(5.10).

3. The free surface correction ζ ′ is defined as

ζ ′ = ζn+1,it+1 − ζn+1,it (5.33)

The corrected depth-integrated current is then obtained by adding an
implicit correction term

Un+1,it+1 = Up −Hn+1,it;u∆tg

h1

∂ζ ′

∂ξ1
(5.34)
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V n+1,it+1 = V p −Hn+1,it;v∆tg

h2

∂ζ ′

∂ξ2
(5.35)

where (Up,V p) are the depth integrated values of (up,vp).

The values for ζ ′ follow from inversion of the elliptic equation that
arises by introducing (5.34)–(5.35) into the 2-D continuity equation

ζn+1,it − ζn

∆t
+

ζ ′

∆t
= − 1

h1h2

(
∆c
x (hu2U

p) + ∆c
y (hv1V

p)
)

+
1

h1h2

[
∆c
x

(
∆thu2g

uHn+1,it;u

hu1
∆u
xζ
′
)

+ ∆c
y

(
∆thv1g

vHn+1,it;v

hv2
∆v
yζ
′
)]

(5.36)

Equation (5.36) can be written as a linear system of equations with
non-zero values only on the diagonal and five sub-diagonals

Aijζ
′
i−1,j +Bi,jζ

′
i,j−1 + Cijζ

′
i,j +Dijζ

′
i,j+1 + Eijζ

′
i+1,j = Fij (5.37)

Since the decomposition (5.34)–(5.35) can no longer be used at open
boundaries, Un+1 or V n+1 are firstly written as a sum of explicit and
implicit (involving ζ ′) terms which are then substituted into the conti-
nuity equation. This is further discussed in Section 5.3.19.1.

4. The free surface elevation is updated

ζn+1,it+1 = ζn+1,it + ζ ′ (5.38)

5. The total water depth is updated

Hn+1,it+1 = Hn+1,it + ζ ′ (5.39)

6. The depth-integrated velocity fields are corrected using (5.34)–(5.35).

7. The values of Un+1,it+1 and V n+1,it+1 are evaluated at the open boun-
daries by applying the appropriate boundary conditions.

8. The predicted values up, vp of the horizontal current are corrected to en-
sure that the depth-integrated currents obtained from equations (5.34)–
(5.35) are identical to the depth-integrated values of the 3-D current.
The corrected values are then given by

un+1 =
Hn+1,it;uup + Un+1,it+1 − Up

Hn+1,it+1;u
(5.40)

vn+1 =
Hn+1,it;vvp + V n+1,it+1 − V p

Hn+1,it+1;v
(5.41)
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9. A convergence check is performed by comparing the norm of ζ ′ with a
threshold value ε, i.e.

‖ζ ′‖∞ = max(ζ ′) ≤ εimp (5.42)

A new iteration is started when the criterion is not satisfied, unless
it > itmax in which case no further iterations are taken.

10. After completing the iteration loop, the vertical current is obtained
by integration of the “baroclinic” continuity equation, as described
in Section 5.3.1.4. Since there are no barotropic time steps, one has
uf = un+1, vf = vn+1.

At present, no algorithm has been programmed within the COHERENS
source code to solve the linear system, arising from the discretisation of
the 2-D continuity equation. Routines have, however, been provided to
solve (5.37) with the external PETSc library which is activated in the pro-
gram by setting the -DPETSC compiler option. Different algorithms (lin-
ear solvers and preconditioners) are available, whose default values (Incom-
plete Cholesky preconditioner in combination with a GMRES solver) can be
changed by the user. Since the solvers are iterative, a tolerance level has to
be provided.

In summary, application of the implicit scheme involves two iteration
loops. The inner loop solves the linear system for ζ ′ and is controlled by the
routines of the PETSc library. The maximum number of iterations of the
outer loop (needed for convergence of the h3-factor) is set by the user with
the parameter maxitsimp.

5.3.3 Advection schemes and time discretisation

5.3.3.1 introduction

The time discretisation of the momentum equations depends on the type of
advection scheme employed for the spatial discretisation of the horizontal and
vertical advection terms. Several schemes are implemented in the program,
selected with the model switches iopt adv 3D and iopt adv 2D. They may take
the following values:

0 : horizontal and vertical advection of momentum disabled

1 : upwind scheme for horizontal and vertical advection
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2 : Lax-Wendroff scheme for horizontal, central scheme for vertical advec-
tion1

3 : TVD (Total Variation Diminishing) scheme using the superbee limiter
as a weighting function between the upwind scheme and either the
Lax-Wendroff scheme in the horizontal or the central scheme in the
vertical

4 : as the previous case now using the monotonic limiter.

The discretisation of the different advection schemes is illustrated with
the following simple example, describing the 1-D advection of a scalar ψ:

∂ψ

∂t
+ a

∂ψ

∂x
= 0 (5.43)

where a is a constant advecting velocity and the equation is spatially inte-
grated for the interval xa ≤ x ≤ xb. The equation can then be rewritten in
flux form

∂ψ

∂t
+
∂F

∂x
= 0 (5.44)

where F = aψ is the advective flux. The discretised form of (5.44), using
forward Euler time integration, is given by

ψn+1 − ψn

∆t
+
Fi+1 − Fi

∆x
= 0 (5.45)

where ∆t is the time step and ∆x a uniform grid spacing. The quantities
ψ and Fi are evaluated on a uniform staggered grid (see Figure 5.5) with
ψ-points located halfway between the F -points. Boundary conditions at xa
and xb are needed to determine the fluxes F1 and FN+1. At interior points,
i.e. for 2 ≤ i ≤ N + 1, the fluxes Fi are then written as a weighting between
the upwind and Lax-Wendroff fluxes Fup;i and Flw;i:

Fi =
(

(1− Ω(ri))Fup;i + Ω(ri)Flw;i

)
(5.46)

where

Fup;i =
1

2
a
(

(1 + si)ψi−1 + (1− si)ψi
)

(5.47)

Flw;i =
1

2
a
(

(1 + ci)ψi−1 + (1− ci)ψi
)

(5.48)

1The “pure” Lax-Wendroff and central schemes have only been implemented for illus-
trative purposes and should be avoided in realistic simulations.



5.3. MOMENTUM EQUATIONS 197

1
F
2

F
3

F
N+1

ψ
1

ψ
2

ψ
Ν

a
x

b

F

x

Figure 5.5: Numerical grid for the 1-D advection problem.

where si and ci are the sign and CFL number of the advecting current

si = Sign(a) , ci =
a∆t

∆x
(5.49)

The weight function Ω depends on the type of advection scheme:

• upwind
Ω(r) = 0 (5.50)

• Lax-Wendroff
Ω(r) = 1 (5.51)

• TVD with superbee limiter

Ω(r) = max(0,min(2r, 1),min(r, 2)) (5.52)

• TVD with monotonic limiter

Ω(r) =
r + |r|
1 + |r|

(5.53)

The argument r of Ω is defined by

ri =
(1 + si)∆Fi−1 + (1− si)∆Fi+1

2∆Fi
∆Fi = Flw;i − Fup;i (5.54)

The discretisation scheme for vertical advection is similar, except that
the Lax-Wendroff flux Flw;k is replaced by the central flux

Fce;k =
1

2
a(ψk−1 + ψk) (5.55)

The discretisation schemes, actually applied in the model, need to take
account of the following additional complexities

• non-uniform grids
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• space and time dependent currents

• grid staggering (advected quantities and advecting currents can, for
example, be located at the same locations)

• extensions to 2-D and 3-D grids

• time integration using operator splitting (see below) to improve the
time accuracy of the TVD scheme

Explicit expressions of each discretisation will be presented below for the
advective terms of all model equations.

The upwind scheme has the interesting property to preserve monotonic-
ity, but has the disadvantage of being only first order accurate. The Lax-
Wendroff scheme, on the other hand, is accurate to second order in space and
time but non-monotone which means that spurious over- and undershootings
are created in regimes of strong gradients. This is clearly illustrated by the
results of the test cases cones and front described in Sections 23.1 and 23.2.
The TVD scheme has the advantage of combining the monotonicity of the
upwind scheme with the second order accuracy of the Lax-Wendroff scheme.

Horizontal advection is evaluated explicitly to prevent the solution of
large-banded matrix systems. A necessary stability condition for both the
upwind and the Lax-Wendroff scheme is given by the criterion (5.6) (see
Hirsch, 1990). The restriction to explicit schemes does not apply for the ver-
tical since the discretised equations can be written into a simpler tridiagonal
form (see Section 5.3.18). A semi-implicit scheme in the vertical allows to
replace the Lax-Wendroff by the central scheme which is a monotone scheme
and stable provided that the implicity factor θa ≥ 0.5.

The aim of the limiter function is to reduce the numerical diffusion due
to the upwind scheme in areas of low gradients and to provide sufficiently
large diffusion in regions of large gradients so that over- and undershooting
due to the non-monotonicity of the Lax-Wendroff scheme are suppressed.
Both the superbee (Roe, 1985) as the monotonic limiter are available in the
program. The cones and front test case simulations (see Sections 23.1 and
23.2) showed that the superbee limiter is the least diffusive and is therefore
taken as the default formulation in the program. The spatial discretisation of
the advective terms in the momentum equations and the form of the limiter
function are further discussed in the subsections below.

In the absence of advection or when the upwind or Lax-Wendroff/central
scheme is selected, the momentum equations are solved by forward time-
stepping as given by the time-discretised forms (5.7)–(5.8) or (5.31)–(5.32).
In case of the TVD scheme, the spatial discretisation of the advective terms
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involves the Lax-Wendroff and central schemes which are both second order
accurate in space. The equations are then integrated in time with the aid
of the “fractional step” or “operator splitting” method as proposed by Ya-
nenko (1971). The procedure consists in splitting the time integration into
three fractional steps. During the first and second step only the advection-
diffusion terms in respectively the X- and Y-direction are taken into account.
The vertical advection and diffusion terms and all other terms (Coriolis force,
pressure gradient and tidal force) are included during the third time step.
To preserve the second-order accuracy of the 1-D schemes in the fractional
step approach the method of symmetric splitting (e.g. Hirsch, 1990) is imple-
mented. This means that the previous procedure (“A”-steps) is repeated now
in reverse order (“B”-steps) , i.e. vertical advection/diffusion and other terms
followed by advection-diffusion in the Y-direction, followed by advection-
diffusion in the X-direction. The final “predicted” value of up or vp is then
obtained by taking the average of the values at the end of the A- and B-steps.
The same method is applied for scalar quantities.

The implicity factors θa and θv have a range between 0 and 1 where a
0 corresponds to a fully explicit, 1 a fully implicit and 0.5 a semi-implicit
(Crank-Nicholson) method. The schemes are stable provided that θa, θv ≥
0.5. To retain the same accuracy in time for horizontal as well as vertical
advection the defaults are a semi-implicit option for vertical advection, i.e.
θa = 0.5012 and a fully implicit treatment of vertical diffusion (θv = 1).
Contrary to COHERENS V1, these defaults can be changed by the user and
can take any value between 0 and 1.

For a more detailed account of advection schemes and the time splitting
method see Ruddick (1995).

2The central scheme is second accurate in time if θa = 0.5.
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Table 5.4: Overview of the operators used in the numerical discretisations.

Type Purpose

difference operators

∆x difference operator in the X-direction

∆y difference operator in the Y-direction

∆z difference operator in the vertical direction

advective operators

Ah1 horizontal advection in the X-direction3

Ah1(F ) =
1

h1h2h3

∂

∂ξ1
(h2h3ufF )

Ah2 horizontal advection in the Y-direction3

Ah2(F ) =
1

h1h2h3

∂

∂ξ2
(h1h3vfF )

Av vertical advection (u, v and scalars)

Av(F ) =
1

h3

∂

∂s
(ωF )

Ah1 horizontal advection in the X-direction (2-D mode)

Ah1(F ) =
1

h1h2

∂

∂ξ1

(h2UF
H

)
Ah2 horizontal advection in the Y-direction (2-D mode)

Ah2(F ) =
1

h1h2

∂

∂ξ2

(h1V F
H

)
extended advective operators for currents including curvature terms

(Continued)

3Note that (uf ,vf ) is replaced by (u,v) if F represents u, v or a turbulent transport
variable (k,ε,kl).



5.3. MOMENTUM EQUATIONS 201

Table 5.4: Continued

Ãh1(u) extended horizontal advection of u in the X-direction

Ãh1(u) = Ah1(u)− v2

h1h2

∂h2
∂ξ1

Ãh2(u) extended horizontal advection of u in the Y-direction

Ãh2(u) = Ah2(u) +
uv

h1h2

∂h1
∂ξ2

Ãh1(v) extended horizontal advection of v in the X-direction

Ãh1(v) = Ah1(v) +
uv

h1h2

∂h2
∂ξ1

Ãh2(v) extended horizontal advection of v in the Y-direction

Ãh2(v) = Ah2(v)− u2

h1h2

∂h1
∂ξ2

Ãh1(U) extended horizontal advection of U in the X-direction

Ãh1(U) = Ah1(U)− vV

h1h2

∂h2
∂ξ1

Ãh2(U) extended horizontal advection of U in the Y-direction

Ãh2(U) = Ah2(U) +
vU

h1h2

∂h1
∂ξ2

Ãh1(V ) extended horizontal advection of V in the X-direction

Ãh1(V ) = Ah1(V ) +
uV

h1h2

∂h2
∂ξ1

Ãh2(V ) extended horizontal advection of V in the Y-direction

Ãh2(V ) = Ah2(V )− uU

h1h2

∂h1
∂ξ2

diffusion operators

(Continued)
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Table 5.4: Continued

Dsh1 horizontal diffusion in the X-direction (scalars)

Dsh1(ψ) =
1

h1h2h3

∂

∂ξ1

(
λH

h2h3
h1

∂ψ

∂ξ1

)
Dsh2 horizontal diffusion in the Y-direction (scalars)

Dsh2(ψ) =
1

h1h2h3

∂

∂ξ2

(
λH

h1h3
h2

∂ψ

∂ξ2

)
Dmh1 horizontal diffusion in the X-direction (3-D momentum)

Dmh1(F ) =
1

h1h22h3

∂

∂ξ1

(
h22h3F

)
Dmh2 horizontal diffusion in the Y-direction (3-D momentum)

Dmh2(F ) =
1

h21h2h3

∂

∂ξ2

(
h21h3F

)
τij 3-D horizontal shear stress tensor

τ11 = −τ22 = νHDT

τ12 = τ21 = νHDS

DT =
h2
h1

∂

∂ξ1

(
u

h2

)
− h1
h2

∂

∂ξ2

(
v

h1

)
DS =

h1
h2

∂

∂ξ2

(
u

h1

)
+
h2
h1

∂

∂ξ1

(
v

h2

)
Dsv vertical diffusion (scalars)

Dsv(F ) =
1

h3

∂

∂s

(λψT
h3

∂F

∂s

)
Dmv vertical diffusion (momentum)

Dmv(F ) =
1

h3

∂

∂s

(νT
h3

∂F

∂s

)
Dmh1 horizontal diffusion in the X-direction (2-D momentum)

Dmh1(F ) =
1

h1h22

∂

∂ξ1

(
h22F

)
Dmh2 horizontal diffusion in the Y-direction (2-D momentum)

(Continued)
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Table 5.4: Continued

Dmh2(F ) =
1

h21h2

∂

∂ξ2

(
h21F

)
τij 2-D horizontal shear stress tensor

τ11 = −τ22 = νHDT

τ12 = τ21 = νHDS

DT =
h2
h1

∂

∂ξ1

(
u

h2

)
− h1
h2

∂

∂ξ2

(
v

h1

)
DS =

h1
h2

∂

∂ξ2

(
u

h1

)
+
h2
h1

∂

∂ξ1

(
v

h2

)

other operators

P production terms in the scalar transport equations

S sink terms in the scalar transport equations

T production minus sink terms in the scalar transport equa-
tions

T = P − S

Cfs1 X-corrector term in the scalar transport equations

Cfs1(ψ) =
ψ

h1h2h3

∂

∂ξ1
(h2h3uf )

Cfs2 Y-corrector term in the scalar transport equations

Cfs2(ψ) =
ψ

h1h2h3

∂

∂ξ2
(h1h3vf )

Cs3 Z-corrector term in the scalar transport equations

Cs3(ψ) =
ψ

h3

∂ω

∂s
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5.3.3.2 mode splitting scheme for the 3-D momentum equations

The time-discretised form of the u-equation (4.61) with mode splitting is
given by

• Part A

u
n+1/3
A − un

∆t
= −Ah1(un) +

(vn;u)2∆u
xh

c
2

hu1h
u
2

+Dmh1(νHDT (un, vn)) (5.56)

u
n+2/3
A − un+1/3

A

∆t
= −Ah2(un+1/3

A )−
u
n+1/3
A vn;u∆u

yh
uv
1

hu1h
u
2

+Dmh2(νHDS(u
n+1/3
A , vn)) (5.57)

ũpA − u
n+2/3
A

∆t
= −θaAv(ũpA)− (1− θa)Av(un+2/3

A )

+θvDmv(ũpA) + (1− θv)Dmv(un+2/3
A ) +O1 (5.58)

• Part B

u
n+1/3
B − un

∆t
= −θaAv(un+1/3

B )− (1− θa)Av(un)

+θvDmv(un+1/3
B ) + (1− θv)Dmv(un) +O1 (5.59)

u
n+2/3
B − un+1/3

B

∆t
= −Ah2(un+1/3

B )−
u
n+1/3
B vn;u∆u

yh
uv
1

hu1h
u
2

+Dmh2(νHDS(u
n+1/3
B , vn)) (5.60)

ũpB − u
n+2/3
B

∆t
= −Ah1(un+2/3

B ) +
(vn;u)2∆u

xh
c
2

hu1h
u
2

+Dmh1(νHDT (u
n+2/3
B , vn))

(5.61)

• Predictor value

ũp =
1

2
(ũpA + ũpB) (5.62)

The O1-terms are defined by

O1 = fvn;u − g∆u
xζ

n

hu1
− ∆u

xPa
ρ0hu1

+ F b;n
1 + F t;n+1

1 (5.63)

A similar procedure is applied for the v-equation (4.62).
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• Part A

v
n+1/3
A − vn

∆t
= −Ah1(vn)− u

n;vvn∆v
xh

uv
2

hv1h
v
2

+Dmh1(νHDS(un, vn)) (5.64)

v
n+2/3
A − vn+1/3

A

∆t
= −Ah2(vn+1/3

A ) +
(un;v)2∆v

yh
c
1

hv1h
v
2

−Dmh2(νHDT (un, v
n+1/3
A )) (5.65)

ṽpA − v
n+2/3
A

∆t
= −θaAv(ṽpA)− (1− θa)Av(vn+2/3

A )

+θvDmv(ṽpA) + (1− θv)Dmv(vn+2/3
A ) +O2 (5.66)

• Part B

v
n+1/3
B − vn

∆t
= −θaAv(vn+1/3

B )− (1− θa)Av(vn)

+θvDmv(vn+1/3
B ) + (1− θv)Dmv(vn) +O2 (5.67)

v
n+2/3
B − vn+1/3

B

∆t
= −Ah2(vn+1/3

B ) +
(un;v)2∆v

yh
c
1

hv1h
v
2

−Dmh2(νHDT (un, v
n+1/3
B )) (5.68)

ṽpB − v
n+2/3
B

∆t
= −Ah1(vn+2/3

B )− un;vv
n+2/3
B ∆v

xh
uv
2

hv1h
v
2

+Dmh1(νHDS(un, v
n+2/3
B )) (5.69)

• Predictor value

ṽp =
1

2
(ṽpA + ṽpB) (5.70)

The O2-terms are defined by

O2 = −fun;v − g
∆v
yζ
n

hv2
−

∆v
yPa

ρ0hv2
+ F b;n

2 + F t;n+1
2 (5.71)

Once ũp and ṽp are obtained, an implicit correction is applied as described
in Section 5.3.1.1.

Important to note again is that, compared to the simpler forward scheme,
the computation using symmetrical operator splitting increases the CPU time
for the circulation module by a factor two, but has the advantage of being
more accurate which is an important property in regions of strong horizontal
and vertical shear.
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5.3.3.3 mode splitting scheme for the 2-D momentum equations

The operator splitting is applied for the 2-D case if the advective terms
are discretised with the TVD scheme (iopt adv 2D=3). Since the 2-D mode
equations are solved with a much smaller time step than the 3-D mode,
second-order accuracy is of less relevance. Contrary to the 3-D case, the
simpler upwind scheme, using only a forward Euler time integration, can be
recommended for 2-D applications.

The method is analogous to the 3-D case, but given here in detail for
completeness. Firstly, the U -equation (4.86) is solved as follows:

• Part A

U
m+1/3
A − Um

∆τ
= −Ah1(Um) +

Hm;u(vm;u)2∆u
xh

c
2

hu1h
u
2

+Dmh1(νHDT (Um, V m)) (5.72)

U
m+2/3
A − Um+1/3

A

∆τ
= −Ah2(Um+1/3

A )−
U
m+1/3
A vm;u∆u

yh
uv
1

hu1h
u
2

+Dmh2(νHDS(U
m+1/3
A , V m)) (5.73)

Ũm+1
A − Um+2/3

A

∆τ
+

kub2
Hm;u

Ũm+1
A = O1 (5.74)

• Part B
U
m+1/3
B − Um

∆τ
+

kub2
Hm;u

U
m+1/3
B = O1 (5.75)

U
m+2/3
B − Um+1/3

B

∆τ
= −Ah2(Um+1/3

B )−
U
m+1/3
B vm;u∆u

yh
uv
1

hu1h
u
2

+Dmh2(νHDS(U
m+1/3
B , V m)) (5.76)

Ũm+1
B − Um+2/3

B

∆τ
= −Ah1(Um+2/3) +

Hm+1;u(vm;u)2∆u
xh

c
2

hu1h
u
2

+Dmh1(νHDT (U
m+2/3
B , V m)) (5.77)

• Value at new time step

Ũm+1 =
1

2
(Ũm+1

A + Ũm+1
B ) (5.78)
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The O1-terms are defined by

O1 = fV m;u − gHm+1;u

hu1
∆u
xζ

m+1 − Hm+1;u

ρ0hu1
∆xPa + F1

b;n
+Hm+1;uF t;m+1

1

+ τus1 − k
p;u
b1

(
upb −

Up

Hn;u

)
− δAnh1 + δD

n

h1 (5.79)

A similar procedure is followed for the V -equation (4.87):

• Part A

V
m+1/3
A − V m

∆τ
= −Ah1(V m)− um;vV m∆v

xh
uv
2

hv1h
v
2

+Dmh1(νHDT (Um, V m)) (5.80)

V
m+2/3
A − V m+1/3

A

∆τ
= −Ah2(V m+1/3

A ) +
Hm;v(um;v)2∆v

yh
c
1

hv1h
v
2

−Dmh2(νHDS(Um, V
m+1/3
A )) (5.81)

Ṽ m+1
A − V m+2/3

A

∆τ
+

kvb2
Hm;v

Ṽ m+1
A = O2 (5.82)

• Part B
V
m+1/3
B − V m

∆τ
+

kvb2
Hm;v

V
m+1/3
B = O2 (5.83)

V
m+2/3
B − V m+1/3

B

∆τ
= −Ah2(V m+1/3

B ) +
Hm;v(um;v)2∆v

yh
c
1

hv1h
v
2

−Dmh2(νHDS(Um, V
m+1/3
B )) (5.84)

Ṽ m+1
B − V m+2/3

A

∆τ
= −Ah1(V m+2/3)− um;vV m+2/3∆v

xh
uv
2

hv1h
v
2

+Dmh1(νHDT (Um, V
m+2/3
B )) (5.85)

• Value at new time step

Ṽ m+1 =
1

2
(Ṽ m+1

A + Ṽ m+1
B ) (5.86)
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The O2-terms are defined by

O2 = −fUm;v − gHm+1;v

hv2
∆v
yζ
m+1 − Hm+1;v

ρ0hv2
∆yPa + F2

b;n
+Hm+1;vF t;m+1

2

+ τ vs2 − kvb1
(
vpb −

V p

Hn;v

)
− δAnh2 + δD

n

h2 (5.87)

Once Ũm+1 and Ṽ m+1 are obtained, an implicit correction is applied as des-
cribed in Section 5.3.1.2.

Table 5.5: Definitions of the fluxes used in the numerical discretisations.

Type Purpose
advective fluxes

F1 advective flux of a scalar in the X-direction at the U-node
F1 = uψ

F2 advective flux of a scalar in the Y-direction at the V-node
F2 = vψ

F3 advective flux of a scalar in the vertical direction at the W-node
F3 = ωψ

F11 advective flux of u in the X-direction at the C-node
F11 = uu

F12 advective flux of a u in the Y-direction at the UV-node
F12 = vu

F21 advective flux of a v in the X-direction at the UV-node
F21 = uv

F22 advective flux of v in the Y-direction at the C-node
F22 = vv

F13 advective flux of u in the vertical direction at the UW-node
F13 = ωu

F23 advective flux of v in the vertical direction at the VW-node
F23 = ωv

F 11 advective flux of U in the X-direction at the C-node
F 11 = uU

F 12 advective flux of U in the Y-direction at the UV-node
F 12 = vU

F 21 advective flux of V in the X-direction at the UV-node
F 21 = uV

F 22 advective flux of V in the Y-direction at the C-node
F 22 = vV

(Continued)
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Table 5.5: Continued

diffusive fluxes

D1 diffusive flux of a scalar in the X-direction at the U-node

D1 =
λH
h1

∂ψ

∂ξ1

D2 diffusive flux of a scalar in the Y-direction at the V-node

D2 =
λH
h2

∂ψ

∂ξ2

D3 diffusive flux of a scalar in the vertical direction at the W-node

D3 =
λψT
h3

∂ψ

∂s

D11 diffusive flux in the X-direction (u-equation) at the C-node
D11 = h2τ11 = νHh2DT

D12 diffusive flux in the Y-direction (u-equation) at the UV-node
D12 = h1τ12 = νHh1DS

D21 diffusive flux in the X-direction (v-equation) at the UV-node
D21 = h2τ21 = νHh2DS

D22 diffusive flux in the Y-direction (v-equation) at the C-node
D22 = h1τ22 = −νHh1DT

D13 diffusive flux in the vertical direction (u-equation) at the UW-
node

D13 =
νT
h3

∂u

∂s
D23 diffusive flux in the vertical direction (v-equation) at the VW-

node

D23 =
νT
h3

∂v

∂s
D11 diffusive flux in the X-direction (U -equation) at the C-node

D11 = h2τ11 = νHh2DT

D12 diffusive flux in the Y-direction (U -equation) at the UV-node
D12 = h1τ12 = νHh1DS

D21 diffusive flux in the X-direction (V -equation) at the UV-node
D21 = h2τ21 = νHh2DS

D22 diffusive flux in the Y-direction (V -equation) at the C-node
D22 = h1τ22 = −νHh1DT

(Continued)
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Table 5.5: Continued

5.3.4 Discretisation of 3-D horizontal advection

The four horizontal advective terms in the 3-D momentum equations are
written as the divergence of the horizontal fluxes F11, F12, F21, F22, defined
in Table 5.5:

Ah1(u) =
1

h1h2h3

∂

∂ξ1

(
h2h3u

2
)

=
1

h1h2h3

∂

∂ξ1

(
h2h3F11

)
(5.88)

Ah2(u) =
1

h1h2h3

∂

∂ξ2

(
h1h3uv

)
=

1

h1h2h3

∂

∂ξ2

(
h1h3F12

)
(5.89)

Ah1(v) =
1

h1h2h3

∂

∂ξ1

(
h2h3uv

)
=

1

h1h2h3

∂

∂ξ1

(
h2h3F21

)
(5.90)

Ah2(v) =
1

h1h2h3

∂

∂ξ2

(
h1h3v

2
)

=
1

h1h2h3

∂

∂ξ2

(
h1h3F22

)
(5.91)

For simplicity, the k-index and time level will be omitted from the discreti-
sation formulae.

Extended forms of the above operators which include the appropriate
curvature term, are defined by (see Table 5.4):

Ãh1(u) = Ah1(u)− v2

h1h2

∂h2
∂ξ1

(5.92)

Ãh2(u) = Ah2(u) +
uv

h1h2

∂h1
∂ξ2

(5.93)

Ãh1(v) = Ah1(v) +
uv

h1h2

∂h2
∂ξ1

(5.94)

Ãh2(v) = Ah2(v)− u2

h1h2

∂h1
∂ξ2

(5.95)

5.3.4.1 alongstream advection of u

The alongstream advective term in the u-equation (4.61) is obtained by dif-
ferencing the flux F c

11 at the U-node

Ah1(u)uij =
hc2;ijh

c
3;ijF

c
11;ij − hc2;i−1,jhc3;i−1,jF c

11;i−1,j

hu1;ijh
u
2;ijh

u
3;ij

(5.96)

The flux is calculated from

F c
11;ij =

(
1− Ω(rcij)

)
F c
up;ij + Ω(rcij)F

c
lw;ij (5.97)
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where F c
up;ij and F c

lw;ij are the upwind and Lax-Wendroff fluxes at the C-node:

F c
up;ij =

1

2
ucij

(
(1 + sij)uij + (1− sij)ui+1,j

)
(5.98)

F c
lw;ij =

1

2
ucij

(
(1 + cij)uij + (1− cij)ui+1,j

)
(5.99)

where sij and cij are the sign and CFL number of the advecting current

sij = Sign(ucij) , cij =
ucij∆t

hc1;ij
(5.100)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

rcij =
(1 + sij)∆F

c
i−1,j + (1− sij)∆F c

i+1,j

2∆F c
ij

∆F c
ij = F c

lw;ij − F c
up;ij (5.101)

The extended advective term is discretised as

Ãh1(u)uij = Ah1(u)uij −
(vuij)

2∆u
xh

c
2;ij

hu1;ijh
u
2;ij

(5.102)

5.3.4.2 cross-stream advection of u

The cross-stream advective term in the u-equation (4.61) is obtained by dif-
ferencing the flux F uv

12 at the U-node

Ah2(u)uij =
huv1;i,j+1h

uv
3;i,j+1F

uv
12;i,j+1 − huv1;ijhuv3;ijF uv

12;ij

hu1;ijh
u
2;ijh

u
3;ij

(5.103)

The flux is calculated from

F uv
12;ij =

(
1− Ω(ruvij )

)
F uv
up;ij + Ω(ruvij )F uv

lw;ij (5.104)

where F uv
up;ij and F uv

lw;ij are the upwind and Lax-Wendroff fluxes at the UV-
node:

F uv
up;ij =

1

2
vuvij

(
(αij + sij)ui,j−1 + (βij − sij)uij

)
(5.105)

F uv
lw;ij =

1

2
vuvij

(
(αij + cij)ui,j−1 + (βij − cij)uij

)
(5.106)
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where

sij = Sign(vuvij ) , cij =
vuvij ∆t

huv2;ij
(5.107)

αij =
hu2;ij
huv2;ij

, βij =
hu2;i,j−1
huv2;ij

(5.108)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

ruvij =
(αij + sij)∆F

uv
i,j−1 + (βij − sij)∆F uv

i,j+1

2∆F uv
ij

∆F uv
ij = F uv

lw;ij − F uv
up;ij (5.109)

The extended advective term is discretised as

Ãh2(u)uij = Ah2(u)ij +
uijv

u
ij∆

u
yh

uv
1;ij

hu1;ijh
u
2;ij

(5.110)

5.3.4.3 cross-stream advection of v

The cross-stream advective term in the v-equation (4.62) is obtained by dif-
ferencing the flux F uv

21 at the V-node

Ah1(v)vij =
huv2;i+1,jh

uv
3;i+1,jF

uv
21;i+1,j − huv2;ijhuv3;ijF uv

21;ij

hv1;ijh
v
2;ijh

v
3;ij

(5.111)

The flux is calculated from

F uv
21;ij =

(
1− Ω(ruvij )

)
F uv
up;ij + Ω(ruvij )F uv

lw;ij (5.112)

where F uv
up;ij and F uv

lw;ij are the upwind and Lax-Wendroff fluxes at the UV-
node:

F uv
up;ij =

1

2
uuvij

(
(αij + sij)vi−1,j + (βij − sij)vij

)
(5.113)

F uv
lw;ij =

1

2
uuvij

(
(αij + cij)vi−1,j + (βij − cij)vij

)
(5.114)

where

sij = Sign(uuvij ) , cij =
uuvij ∆t

huv1;ij
(5.115)

αij =
hv1;ij
huv1;ij

, βij =
hv1;i−1,j
huv1;ij

(5.116)
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The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

ruvij =
(αij + sij)∆F

uv
i−1,j + (βij − sij)∆F uv

i+1,j

2∆F uv
ij

∆F uv
ij = F uv

lw;ij − F uv
up;ij (5.117)

The extended advective term is discretised as

Ãh1(v)vij = Ah1(v)vij +
uvijvij∆

v
xh

uv
2;ij

hv1;ijh
v
2;ij

(5.118)

5.3.4.4 alongstream advection of v

The alongstream advective term in the v-equation (4.62) is obtained by dif-
ferencing the flux F c

22 at the V-node

Ah2(v)vij =
hc1;ijh

c
3;ijF

c
22;ij − hc1;i,j−1hc3;i,j−1F c

22;i,j−1

hv1;ijh
v
2;ijh

v
3;ij

(5.119)

The flux is calculated from

F c
22;ij =

(
1− Ω(rcij)

)
F c
up;ij + Ω(rcij)F

c
lw;ij (5.120)

where F c
up;ij and F c

lw;ij are the upwind and Lax-Wendroff fluxes at the C-node:

F c
up;ij =

1

2
vcij

(
(1 + sij)vij + (1− sij)vi,j+1

)
(5.121)

F c
lw;ij =

1

2
vcij

(
(1 + cij)vij + (1− cij)vi,j+1

)
(5.122)

where sij and cij are the sign and CFL number of the advecting current

sij = Sign(vcij) , cij =
vcij∆t

hc2;ij
(5.123)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

rcij =
(1 + sij)∆F

c
i,j−1 + (1− sij)∆F c

i,j+1

2∆F c
ij

∆F c
ij = F c

lw;ij − F c
up;ij (5.124)

The extended advective term is discretised as

Ãh2(v)vij = Ah2(v)vij −
(uvij)

2∆v
yh

c
1;ij

hv1;ijh
v
2;ij

(5.125)
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5.3.5 Discretisation of 2-D horizontal advection

The four horizontal advective terms in the 2-D momentum equations are
written as the divergence of the horizontal fluxes F 11, F 12, F 21, F 22, defined
in Table 5.5:

Ah1(U) =
1

h1h2

∂

∂ξ1
(h2uU) =

1

h1h2

∂

∂ξ1
(h2F 11) (5.126)

Ah2(U) =
1

h1h2

∂

∂ξ2
(h1vU) =

1

h1h2

∂

∂ξ2
(h1F 12) (5.127)

Ah1(V ) =
1

h1h2

∂

∂ξ1
(h2uV ) =

1

h1h2

∂

∂ξ1
(h2F 21) (5.128)

Ah2(V ) =
1

h1h2

∂

∂ξ2
(h1vV ) =

1

h1h2

∂

∂ξ2
(h1F 22) (5.129)

Extended forms of the above operators which include the appropriate
curvature term, are defined by (see Table 5.4):

Ãh1(U) = Ah1(U)− vV

h1h2

∂h2
∂ξ1

(5.130)

Ãh2(U) = Ah2(U) +
vU

h1h2

∂h1
∂ξ2

(5.131)

Ãh1(V ) = Ah1(V ) +
uV

h1h2

∂h2
∂ξ1

(5.132)

Ãh2(V ) = Ah2(V )− uU

h1h2

∂h1
∂ξ2

(5.133)

5.3.5.1 alongstream advection of U

The alongstream advective term in the U -equation (4.86) is obtained by
differencing the flux F

c

11 at the U-node

Ah1(U)uij =
hc2;ijF

c

11;ij − hc2;i−1,jF
c

11;i−1,j

hu1;ijh
u
2;ij

(5.134)

The flux is calculated from

F
c

11;ij =
(

1− Ω(rcij)
)
F
c

up;ij + Ω(rcij)F
c

lw;ij (5.135)

where F
c

up;ij and F
c

lw;ij are the upwind and Lax-Wendroff fluxes at the C-
node:

F
c

up;ij =
1

2
ucij

(
(1 + sij)Uij + (1− sij)Ui+1,j

)
(5.136)



5.3. MOMENTUM EQUATIONS 215

F
c

lw;ij =
1

2
ucij

(
(1 + cij)Uij + (1− cij)Ui+1,j

)
(5.137)

where sij and cij are the sign and CFL number of the advecting current

sij = Sign(ucij) , cij =
ucij∆τ

hc1;ij
(5.138)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 2D. The argu-
ment r of the weight function is defined by

rcij =
(1 + sij)∆F

c

i−1,j + (1− sij)∆F
c

i+1,j

2∆F
c

ij

∆F
c

ij = F
c

lw;ij − F
c

up;ij (5.139)

The extended advective term is discretised by

Ãh1(U)uij = Ah1(U)ij −
vuijV

u
ij∆

u
xh

c
2;ij

hu1;ijh
u
2;ij

(5.140)

5.3.5.2 cross-stream advection of U

The cross-stream advective term in the U -equation (4.86) is obtained by
differencing the flux F

uv

12 at the U-node

Ah2(U)uij =
huv1;i,j+1F

uv

12;i,j+1 − huv1;ijF
uv

12;ij

hu1;ijh
u
2;ij

(5.141)

The flux is calculated from

F
uv

12;ij =
(

1− Ω(ruvij )
)
F
uv

up;ij + Ω(ruvij )F
uv

lw;ij (5.142)

where F
uv

up;ij and F
uv

lw;ij are the upwind and Lax-Wendroff fluxes at the UV-
node:

F
uv

up;ij =
1

2
vuvij

(
(αij + sij)Ui,j−1 + (βij − sij)Uij

)
(5.143)

F
uv

lw;ij =
1

2
vuvij

(
(αij + cij)Ui,j−1 + (βij − cij)Uij)

)
(5.144)

where

sij = Sign(vuvij ) , cij =
vuvij ∆τ

huv2;ij
(5.145)
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αij =
hu2;ij
huv2;ij

, βij =
hu2;i,j−1
huv2;ij

(5.146)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 2D. The argu-
ment r of the weight function is defined by

ruvij =
(αij + sij)∆F

uv

i,j−1 + (βij − sij)∆F
uv

i,j+1

2∆F
uv

ij

∆F
uv

ij = F
uv

lw;ij − F
uv

up;ij (5.147)

The extended advective term is discretised by

Ãh2(U)uij = Ah2(U)ij +
vuijUij∆

u
yh

uv
1;ij

hu1;ijh
u
2;ij

(5.148)

5.3.5.3 cross-stream advection of V

The cross-stream advective term in the V -equation (4.87) is obtained by
differencing the flux F

uv

21 at the V-node

Ah1(V )vij =
huv2;i+1,jF

uv

21;i+1,j − huv2;ijF
uv

21;ij

hv1;ijh
v
2;ij

(5.149)

The flux is calculated from

F
uv

21;ij =
(

1− Ω(ruvij )
)
F
uv

up;ij + Ω(ruvij )F
uv

lw;ij (5.150)

where F
uv

up;ij and F
uv

lw;ij are the upwind and Lax-Wendroff fluxes at the UV-
node:

F
uv

up;ij =
1

2
uuvij

(
(αij + sij)Vi−1,j + (βij − sij)Vi,j

)
(5.151)

F
uv

lw;ij =
1

2
uuvij

(
(αij + cij)Vi−1,j + (βij − cij)Vij

)
(5.152)

where

sij = Sign(uuvij ) , cij =
uuvij ∆τ

huv1;ij
(5.153)

αij =
hv1;ij
huv1;ij

, βij =
hv1;i,j−1
huv1;ij

(5.154)
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The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 2D. The argu-
ment r of the weight function is defined by

ruvij =
(αij + sij)∆F

uv

i−1,j + (βij − sij)∆F
uv

i+1,j

2∆F
uv

ij

∆F
uv

ij = F
uv

lw;ij − F
uv

up;ij (5.155)

The extended advective term is discretised as

Ãh1(V )vij = Ah1(V )ij +
uvijVij∆

v
xh

uv
2;ij

hv1;ijh
v
2;ij

(5.156)

5.3.5.4 alongstream advection of V

The alongstream advective term in the V -equation (4.87) is obtained by
differencing the flux F

c

22 at the V-node

Ah2(V )vij =
hc1;ijF

c

22;ij − hc1;i,j−1F
c

22;i,j−1

hv1;ijh
v
2;ij

(5.157)

The flux is calculated from

F
c

22;ij =
(

1− Ω(rcij)
)
F
c

up;ij + Ω(rcij)F
c

lw;ij (5.158)

where F
c

up;ij and F
c

lw;ij are the upwind and Lax-Wendroff fluxes at the C-
node:

F
c

up;ij =
1

2
vcij

(
(1 + sij)Vij + (1− sij)Vi,j+1

)
(5.159)

F
c

lw;ij =
1

2
vcij

(
(1 + cij)Vij + (1− cij)Vi,j+1

)
(5.160)

where sij and cij are the sign and CFL number of the advecting current

sij = Sign(vcij) , cij =
vcij∆τ

hc2;ij
(5.161)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 2D. The argu-
ment r of the weight function is defined by

rcij =
(1 + sij)∆F

c

i,j−1 + (1− sij)∆F
c

i,j+1

2∆F
c

ij
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∆F
c

ij = F
c

lw;ij − F
c

up;ij (5.162)

The extended advective term is discretised as

Ãh2(V )vij = Ah2(V )ij −
uvijU

v
ij∆

v
yh

c
1;ij

hv1;ijh
v
2;ij

(5.163)

5.3.6 Integrals of the baroclinic advection terms

The discretised versions of the advective integrals in the 2-D momentum
equations at time step tn are given by

δA
u

h1;ij =
Nz∑
k=1

(
Ãh1(u)uijk + Ãh2(u)uijk

)
hu3;ijk − Ãh1(U)uij − Ãh2(U)uij (5.164)

δA
v

h2;ij =
Nz∑
k=1

(
Ãh1(v)vijk + Ãh2(v)vijk

)
hv3;ijk − Ãh1(V )vij − Ãh2(V )vij (5.165)

5.3.7 Discretisation of vertical advection

The vertical advection terms in the 3-D momentum equations are written as
the divergence of the of the vertical fluxes F13, F23, defined in Table 5.5:

Av(u) =
1

h3

∂

∂s
(ωu) =

1

h3

∂F13

∂s
(5.166)

Av(v) =
1

h3

∂

∂s
(ωv) =

1

h3

∂F23

∂s
(5.167)

5.3.7.1 vertical advection of u

The vertical advective term in the u-equation (4.61) is obtained by differen-
cing the flux F uw

13 at the U-node

Av(u)uijk =
F uw
13;ij,k+1 − F uw

13;ijk

hu3;ijk
(5.168)

The flux is calculated from

F uw
13;ijk =

(
1− Ω(ruwijk)

)
F uw
up;ijk + Ω(ruwijk)F

uw
ce;ijk (5.169)

where F uw
up;ijk and F uw

ce;ijk are the upwind and central fluxes at the UW-node:

F uw
up;ijk =

1

2
ωuwijk

(
(αijk + sijk)uij,k−1 + (βijk − sijk)uijk

)
(5.170)
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F uw
ce;ijk =

1

2
ωuwijk(αijkuij,k−1 + βijkuijk) (5.171)

where

sijk = Sign(ωuwijk) , αijk =
hu3;ijk
huw3;ijk

, βijk =
hu3;ij,k−1
huw3;ijk

(5.172)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

ruwijk =
(αijk + sijk)∆F

uw
ij,k−1 + (βijk − sijk)∆F uw

ij,k+1

2∆F uw
ijk

∆F uw
ijk = F uw

ce;ijk − F uw
up;ijk (5.173)

5.3.7.2 vertical advection of v

The vertical advective term in the v-equation (4.62) is obtained by differen-
cing the flux F vw

23 at the V-node

Av(v)vijk =
F vw
23;ij,k+1 − F vw

23;ijk

hv3;ijk
(5.174)

The flux is calculated from

F vw
23;ijk =

(
1− Ω(rvwijk)

)
F vw
up;ijk + Ω(rvwijk)F

vw
ce;ijk (5.175)

where F vw
up;ijk and F vw

ce;ijk are the upwind and central fluxes at the VW-node:

F vw
up;ijk =

1

2
ωvwijk

(
(αijk + sijk)vij,k−1 + (βijk − sijk)vijk

)
(5.176)

F vw
ce;ijk =

1

2
ωvwijk(αijkvij,k−1 + βijkvijk) (5.177)

where

sijk = Sign(ωvwijk) , αijk =
hv3;ijk
hvw3;ijk

, βijk =
hv3;ij,k−1
hvw3;ijk

(5.178)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv 3D. The argu-
ment r of the weight function is defined by

rvwijk =
(αijk + sijk)∆F

vw
ij,k−1 + (βijk − sijk)∆F vw

ij,k+1

2∆F vw
ijk

∆F vw
ijk = F vw

ce;ijk − F vw
up;ijk (5.179)
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5.3.8 Discretisation of 3-D horizontal diffusion

The four horizontal diffusion terms in the 3-D momentum equations are
written as the divergence of the horizontal fluxes D11, D12, D21, D22, defined
in Table 5.5:

Dmh1(τ11) =
1

h1h22h3

∂

∂ξ1

(
h22h3τ11

)
=

1

h1h22h3

∂

∂ξ1

(
h2h3D11

)
(5.180)

Dmh2(τ12) =
1

h21h2h3

∂

∂ξ2

(
h21h3τ12

)
=

1

h21h2h3

∂

∂ξ2

(
h1h3D12

)
(5.181)

Dmh1(τ21) =
1

h1h22h3

∂

∂ξ1

(
h22h3τ21

)
=

1

h1h22h3

∂

∂ξ1

(
h2h3D21

)
(5.182)

Dmh2(τ22) =
1

h21h2h3

∂

∂ξ2

(
h21h3τ22

)
=

1

h21h2h3

∂

∂ξ2

(
h1h3D22

)
(5.183)

Discretisations for the horizontal diffusion terms in the 3-D momentum
equations are given below. For simplicity, the k-index and time level will be
omitted.

• alongstream diffusion in the u-equation (4.61) at the U-node

Dmh1(τ11)uij =
hc2;ijh

c
3;ijD

c
11;ij − hc2;i−1,jhc3;i−1,jDc

11;i−1,j

hu1;ij(h
u
2;ij)

2hu3;ij
(5.184)

Dc
11;ij = νcH;ijh

c
2;ij

[hc2;ij
hc1;ij

∆c
x

( uij
hu2;ij

)
−
hc1;ij
hc2;ij

∆c
y

( vij
hv1;ij

)]
(5.185)

• cross-stream diffusion in the u-equation (4.61) at the U-node

Dmh2(τ12)uij =
huv1;i,j+1h

uv
3;i,j+1D

uv
12;i,j+1 − huv1;ijhuv3;ijDuv

12;ij

(hu1;ij)
2hu2;ijh

u
3;ij

(5.186)

Duv
12;ij = νuvH;ijh

uv
1;ij

[huv1;ij
huv2;ij

∆uv
y

( uij
hu1;ij

)
+
huv2;ij
huv1;ij

∆uv
x

( vij
hv2;ij

)]
(5.187)

• cross-stream diffusion in the v-equation (4.62) at the V-node

Dmh1(τ21)vij =
huv2;i+1,jh

uv
3;i+1,jD

uv
21;i+1,j − huv2;ijhuv3;ijDuv

21;ij

hv1;ij(h
v
2;ij)

2hv3;ij
(5.188)

Duv
21;ij = νuvH;ijh

uv
2;ij

[huv1;ij
huv2;ij

∆uv
y

( uij
hu1;ij

)
+
huv2;ij
huv1;ij

∆uv
x

( vij
hv2;ij

)]
(5.189)
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• alongstream diffusion in the v-equation (4.62) at the V-node

Dmh2(τ22)vij =
hc1;ijh

c
3;ijD

c
22;ij − hc1;i,j−1hc3;i,j−1Dc

22;i,j−1

(hv1;ij)
2hv2;ijh

v
3;ij

(5.190)

Dc
22;ij = νcH;ijh

c
1;ij

[hc1;ij
hc2;ij

∆c
y

( vij
hv1;ij

)
−
hc2;ij
hc1;ij

∆c
x

( uij
hu2;ij

)]
(5.191)

5.3.9 Discretisation of 2-D horizontal diffusion

The four horizontal diffusion terms in the 2-D momentum equations are
written as the divergence of the horizontal fluxes D11, D12, D21, D22, defined
in Table 5.5:

Dmh1(τ11) =
1

h1h22

∂

∂ξ1

(
h22τ11

)
=

1

h1h22

∂

∂ξ1

(
h2D11

)
(5.192)

Dmh2(τ12) =
1

h21h2

∂

∂ξ2

(
h21τ12

)
=

1

h21h2

∂

∂ξ2

(
h1D12

)
(5.193)

Dmh1(τ21) =
1

h1h22

∂

∂ξ1

(
h22τ21

)
=

1

h1h22

∂

∂ξ1

(
h2D21

)
(5.194)

Dmh2(τ22) =
1

h21h2

∂

∂ξ2

(
h21τ22

)
=

1

h21h2

∂

∂ξ2

(
h1D22

)
(5.195)

Discretisations for the horizontal diffusion terms in the 2-D momentum
equations are given below.

• alongstream diffusion in the U -equation (4.86) at the U-node

Dmh1(τ11)uij =
hc2;ijD

c

11;ij − hc2;i−1,jD
c

11;i−1,j

hu1;ij(h
u
2;ij)

2
(5.196)

D
c

11;ij = νH
c
ijh

c
2;ij

[hc2;ij
hc1;ij

∆c
x

( uij
hu2;ij

)
−
hc1;ij
hc2;ij

∆c
y

( vij
hv1;ij

)]
(5.197)

• cross-stream diffusion in the U -equation (4.86) at the U-node

Dmh2(τ12)uij =
huv1;i,j+1D

uv

12;i,j+1 − huv1;ijD
uv

12;ij

(hu1;ij)
2hu2;ij

(5.198)

D
uv

12;ij = νH
uv
ij h

uv
1;ij

[huv1;ij
huv2;ij

∆uv
y

( uij
hu1;ij

)
+
huv2;ij
huv1;ij

∆uv
x

( vij
hv2;ij

)]
(5.199)
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• cross-stream diffusion in the V -equation (4.87) at the V-node

Dmh1(τ21)vij =
huv2;i+1,jD

uv

21;i+1,j − huv2;ijD
uv

21;ij

hv1;ij(h
v
2;ij)

2
(5.200)

D
uv

21;ij = νH
uv
ij h

uv
2;ij

[huv1;ij
huv2;ij

∆uv
y

( uij
hu1;ij

)
+
huv2;ij
huv1;ij

∆uv
x

( vij
hv2;ij

)]
(5.201)

• alongstream diffusion in the V -equation (4.87) at the V-node

Dmh2(τ22)vij =
hc1;ijD

c

22;ij − hc2;i,j−1D
c

22;i,j−1

(hv1;ij)
2hv2;ij

(5.202)

D
c

22;ij = νH
c
ijh

c
1;ij

[hc1;ij
hc2;ij

∆c
y

( vij
hv1;ij

)
−
hc2;ij
hc1;ij

∆c
x

( uij
hu2;ij

)]
(5.203)

5.3.10 Integrals of the baroclinic diffusion terms

The discretised versions of the diffusion integrals in the 2-D momentum equa-
tions are given by

δD
u

h1;ij =
Nz∑
k=1

(
Dmh1(τ11)uijk +Dmh2(τ12)uijk

)
hu3;ijk −Dmh1(τ11)uij −Dmh2(τ12)uij

(5.204)

δD
v

h2;ij =
Nz∑
k=1

(
Dmh1(τ21)vijk +Dmh2(τ22)vijk

)
hv3;ijk −Dmh1(τ21)vij −Dmh2(τ22)vij

(5.205)

5.3.11 Discretisation of vertical diffusion

The vertical diffusion terms in the 3-D momentum equations are written as
the divergence of the vertical fluxes D13, D23, defined in Table 5.5:

Dmv(u) =
1

h3

∂

∂s

(
νT
h3

∂u

∂s

)
=

1

h3

∂D13

∂s
(5.206)

Dmv(v) =
1

h3

∂

∂s

(
νT
h3

∂v

∂s

)
=

1

h3

∂D23

∂s
(5.207)

(5.208)



5.3. MOMENTUM EQUATIONS 223

• The vertical diffusion term in the u-equation (4.61) is obtained by dif-
ferencing the flux Duw

13 at the U-node

Dmv(u)uijk =
Duw

13;ij,k+1 −Duw
13;ijk

hu3;ijk
(5.209)

The flux is calculated from

Duw
13;ijk =

νuwT ;ijk
huw3;ijk

∆u
zuijk (5.210)

• The vertical diffusion term in the v-equation (4.62) is obtained by dif-
ferencing the flux Dvw

23 at the V-node

Dmv(v)vijk =
Dvw

23;ij,k+1 −Dvw
23;ijk

hv3;ijk
(5.211)

The flux is calculated from

Dvw
23;ijk =

νvwT ;ijk
hvw3;ijk

∆v
zvijk (5.212)

5.3.12 Diffusion coefficients for momentum

5.3.12.1 horizontal diffusion coefficients

This section describes the discretisation of the horizontal diffusion coeffi-
cients for the case that a Smagorinsky scheme has been selected. Firstly, the
horizontal tension and shearing are calculated at their “natural” node

Dc
T ;ijk =

hc2;ij
hc1;ij

∆c
x

( uijk
hu2;ij

)
−
hc1;ij
hc2;ij

∆c
y

( vijk
hv1;ij

)
(5.213)

Duv
S;ijk =

huv1;ij
huv2;ij

∆uv
y

( uijk
hu1;ij

)
+
huv2;ij
huv1;ij

∆uv
x

( vijk
hv2;ij

)
(5.214)

The discretised values of the horizontal diffusion coefficient at the C- and
corner nodes are obtained by applying (4.52)

νcH;ijk = Cmh
c
1;ijh

c
2;ij

√(
Dc
T ;ijk

)2
+
(
Dc
S;ijk

)2
(5.215)

νuvH;ijk = Cmh
uv
1;ijh

uv
2;ij

√(
Duv
T ;ijk

)2
+
(
Duv
S;ijk

)2
(5.216)
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Note that the (5.215) and (5.216) only require the interpolation of either DS

at the C-node or DT at the UV-node but not both.
The 2-D coefficients are obtained by vertical integration

νH
c
ij =

Nz∑
k=1

νcH;ijkh
c
3;ijk (5.217)

νH
uv
ij =

Nz∑
k=1

νuvH;ijkh
uv
3;ijk (5.218)

5.3.12.2 vertical diffusion coefficient

The vertical diffusion coefficient for momentum νT is obtained from one of
the available turbulence schemes, described in Section 4.4. Values are first
stored at the W-nodes and interpolated afterwards at the UW- and VW-
nodes for the calculation of the vertical diffusion fluxes in the momentum
equations. The evaluation of νT only involves algebraic expressions so that
the discretisation procedure is straightforward.

The following comments are to be given

• To avoid spurious numerical oscillations the squared buoyancy fre-
quency N2 is spatially discretised by averaging over the neighbouring
cells in the horizontal:(

Nw
ijk

)2
=

[
2wij(Ñijk)

2 + wi−1,j(Ñi−1,jk)
2 + wi+1,j(Ñi+1,jk)

2

wi,j−1(Ñi,j−1,k)
2 + wi,j+1(Ñi,j+1,k)

2
]

[
2wij + wi−1,j + wi+1,j + wi,j−1 + wi,j+1

]−1
(5.219)

where(
Ñijk

)2
=
βwT ;ijk(T

c
ijk − T cij,k−1)− βwS;ijk(Scijk − Scij,k−1)

hw3;ijk
(5.220)

is the unfiltered value of N2 and wij equals 0 on land and 1 on sea
cells. The expansion coefficients βT and βS are first obtained from the
equation of state at the C-node and then interpolated at the W-nodes.

• The squared shear frequency M2 is discretised using(
Mw

ijk

)2
=

(ucijk − ucij,k−1)2 + (vcijk − vcij,k−1)2

(hw3;ijk)
2

(5.221)
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Note that the currents are interpolated first at the C-nodes before the
vertical derivative is taken.

• The Richardson number is obtained using its definition Ri = N2/M2.
An upper limit of 1000 is imposed to prevent division by zero if N2 �
M2.

• If the vertical diffusion coefficient is derived from a RANS model (see
Section 4.4.3), its value is not known at the surface and the bottom.
Its evaluation involves the turbulent parameters k, ε or l which are
obtained from algebraic relations or by solving additional transport
equations. This is further discussed in Section 5.6.

5.3.13 Discretisation of the baroclinic pressure gradi-
ent

A known problem is the numerical treatment of the baroclinic pressure gra-
dient for σ-coordinate models. Two types of errors may occur

• The two terms on the right hand side of (4.74) may have the same
magnitude and different signs. Significant rounding errors may arise,
especially in case of large bathymetric gradients.

• Violation of the hydrostatic consistency condition which states that a
σ-surface immediately below (above) a given σ-surface remains below
(above) the given σ-surface within a horizontal distance of one grid
interval ∣∣∣ σ

H

∂H

∂xi

∣∣∣∆xi < ∆σ (5.222)

where ∆xi is the grid resolution in the X- or Y-direction and ∆σ the
vertical resolution in σ-space.

For further discussion and examples are found in Haney (1991); Kliem &
Pietrzak (1999).

Several solutions have been proposed: fourth order (McCalpin, 1994)
or sixth order (Chu & Fan, 1997) discretisations, “z”-level based methods
(Beckmann & Haidvogel, 1993; Stelling & Van Kester, 1994; Slørdal, 1997),
second order method using unequal weighting (Song, 1998), cubic polyno-
mial interpolation using harmonic averaging (Shchepetkin & McWilliams,
2003). Three algorithms are implemented in the code: the “traditional”
second-order discretisation, a simple z-level method and the Shchepetkin &
McWilliams (2003) approach.
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Before discussing the implemented algorithms, the baroclinic pressure
gradient is rewritten in a more convenient form. In Cartesian coordinates,
the last term on the right of (4.56) can be written as

− ∂q

∂xi
= −g ∂

∂xi

∫ ζ

z

( ρ
ρ0
− 1
)

dz′

= −g
∫ ζ

z

∂

∂xi

( ρ
ρ0
− 1
)

dz′ − g
(ρs
ρ0
− 1
) ∂ζ
∂xi

' − g

ρ0

∫ ζ

z

∂ρ

∂xi
dz′

' g

∫ ζ

z

(
βT
∂T

∂xi
− βS

∂S

∂xi

)
dz′ (5.223)

where use is made of the Boussinesq approximaion. The last line is obtained
by applying the equation of state, taking account that T represents potential
and not in situ temperature. The latter approximation is at least valid for
non-oceanic waters.

In transformed coordinates, equation (5.223) becomes

F b
i = g

∫ ζ

z

βT

( ∂T
∂xi

∣∣∣
σ
− ∂T

∂z′
∂z′

∂xi

∣∣∣
σ

)
dz′ − g

∫ ζ

z

βS

( ∂S
∂xi

∣∣∣
σ
− ∂S

∂z′
∂z′

∂xi

∣∣∣
σ

)
dz′

= F T
i + F S

i (5.224)

where a
∣∣∣
σ

means a derivative along a surface of constant σ.

The implemented discretisations for F T
1 are discussed below. Algorithms

for the salinity and Y-component are obtained in a similar way.

5.3.13.1 second-order method

The scheme uses a straightforward discretisation of (5.224)

F T
ijNz =

guij
2hu1;ij

βuT ;ijNz∆
u
x(TijNz)h

u
3;ijNz

F T
ij,k−1 = F T

ijk +
guij
hu1;ij

βuwT ;ijk

(
huw3;ijk∆

uw
x (Twijk)−∆uw

z (T uijk)∆
uw
x (zwijk)

)
(5.225)

for Nz ≥ k ≥ 2.
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5.3.13.2 z-level method

The z-level scheme evaluates the horizontal gradient by vertically interpo-
lating the values of T at the C-node to the vertical level of the U-node (see
Figure 5.6). If zuijk denotes the “physical” z-level of the U-node where the
gradient has to be evaluated, the X-component of the gradient is obtained
by vertically interpolating the C-node temperature values in the adjacent
columns (i-1,j) and (i,j) to the vertical level of the U-node. Denoting this
values by respectively TLijk and TRijk, the pressure gradient is readily evaluated
using (5.223):

F T
ijNz =

guij
2hu1;ij

βuT ;ijNz(T
R
ijk − TLijk)hu3;ijNz

F T
ij,k−1 = F T

ijk +
guij
hu1;ij

βuwT ;ijk(T
R
ijk − TLijk)huw3;ijk (5.226)

The following restrictions apply:

• If the vertical position of TLijk or TRijk is below the lowest grid point, its
value is set to Tij1.

• If the vertical position of TLijk or TRijk is above the highest grid point,
its value is set to TijNz .

Despite its simplicity and the fact that it avoids the truncation problem of the
σ-grid, the scheme may produce unrealistic results near the bottom (surface)
or adjacent to a sloping boundary.

5.3.13.3 cube-H method

The “cube-H” algorithm is probably the most robust scheme, but at the
expense of a larger CPU time. The method uses a cubic spline formalism
together with harmonic averaging. Details of the scheme are not given here
but can be found in the paper of Shchepetkin & McWilliams (2003).

Omitting the j-index for simplicity, the following procedure is taken

1. Evaluate the integral at the W-nodes

FWik =

∫ σci,k+1

σcik

T
∂z

∂σ
dσ (5.227)
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Figure 5.6: Illustration of the z-level interpolation scheme. C- and U-nodes
are represented by empty, respectively solid circles.

giving

FWi,Nz+1 =
1

2
TiNzh

c
3;iNz (5.228)

FWik =
1

2
(Ti,k−1 + Tik)(z

c
ik − zci,k−1)

− 1

10

[
(dzTik − dzTi,k−1)

(
zcik − zci,k−1 −

1

12
(dzz

c
i,k−1 + dzz

c
ik)
)

− (dzz
c
ik − dzzci,k−1)

(
Tik − Ti,k−1 −

1

12
(dzTi,k−1 + dzTik)

)]
(5.229)

where 2 ≤ k ≤ Nz.



5.3. MOMENTUM EQUATIONS 229

2. Evaluate the integral at the UW-nodes

FUik =

∫ ξc1;i+1,k

ξc1;ik

T
∂z

∂ξ1
dξ1 (5.230)

giving
FUi,Nz+1 = 0 (5.231)

FUik =
1

2
(Ti−1,k + Tik)(z

c
ik − zci−1,k)

− 1

10

[
(dxTik − dxTi−1,k)

(
zcik − zci−1,k −

1

12
(dxz

c
i−1,k + dxz

c
ik)
)

− (dxz
c
ik − dxzci−1,k)

(
Tik − Ti−1,k −

1

12
(dxTi−1,k + dxTik)

)]
(5.232)

where 2 ≤ k ≤ Nz.

3. The algorithms for the derivatives in (5.229) and (5.232) are given by:

• Vertical derivatives

dzfik =
2(fi,k+1 − fik)(fik − fi,k−1)

fi,k+1 − fi,k−1
if (fi,k+1 − fik)(fik − fi,k−1) > 0

dzfik = 0 otherwise
(5.233)

Values at the boundaries are

dzfi1 =
6

5
(fi2 − fi1)−

7

15
dzfi2

dzfiNz =
6

5
(fiNz − fi,Nz−1)−

7

15
dzfi,Nz−1 (5.234)

• Horizontal derivatives

dxfik =
2(fi+1,k − fik)(fik − fi−1,k)

fi+1,k − fi−1,k
if (fi+1,k − fik)(fik − fi−1,k) > 0

dxfik = 0 otherwise
(5.235)

Boundary conditions are

i− 1 dry, i+1 wet : dxfik = 6
5
(fi+1,k − fik)− 7

15
dxfi+1,k

i− 1 wet, i+1 dry : dxfik = 6
5
(fik − fi−1,k)− 7

15
dxfi−1,k

i− 1 dry, i+1 dry : dxfik = 0
(5.236)
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4. Evaluate the “temperature Jacobian” at the UW-node

I(T, z) =
1

h1

∂T

∂ξ1

∣∣∣
σ

∂z

∂σ
− 1

h1

∂T

∂σ

∂z

∂ξ1

∣∣∣
σ

(5.237)

giving

Iuwik =
gui β

uw
T ;ik

hu1;i
(FWik − FWi−1,k − FUik + FUi,k−1) (5.238)

for 2 ≤ k ≤ Nz.

5. Evaluate the baroclinic gradient

F T
ik =

Nz+1∑
k′=k+1

Iuwik′ (5.239)

for 1 ≤ k ≤ Nz, or

F T
iNz =

gui
2hu1;i

βuT ;iNz∆
u
x(TiNz)h

u
3;iNz

F T
i,k−1 = F T

ik + Iik (5.240)

for 2 ≤ k ≤ Nz.

5.3.14 Tidal force

If the astronomical tidal force is included in the momentum equations4, the
components of the force are updated at each internal (3-D) time step. Tidal
constituents for the harmonic expansion are selected by the user.

The procedure is the following:

• The astronomical Greenwich arguments and nodal factors are updated
using the expressions given in Section 4.5 if requested. Otherwise

fqn(tm+1) ' fqn(tm)

Pm+1
qn ' Pm

qn + ∆τωqn (5.241)

where Pm
qn = Vqn(tm) + uqn(tm) and ωqn are the frequencies of the tidal

constituents56.

4The astronomical tidal force can only be taken into account if a spherical grid is
selected.

5Time is converted to GMT if necessary.
6Equation (5.241) is applied in double precision arithmetic to avoid truncation errors.
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• The tidal amplitudes Am+1
qn are calculated using (4.232).

• The components of the tidal force are determined using (4.231) and
(4.230)

F t;u
1;ij = −

guij
hu1;ij

[3

2
sin(2φuij)∆

u
x(φ

c
ij)

N0∑
n=1

A0n cos(P0n;ij)

+ sin(2φuij)∆
u
x(λ

c
ij)

N1∑
n=1

A1n sin(λuij + P1n;ij)

− 2 cos(2φuij)∆
u
x(φ

c
ij)

N1∑
n=1

A1n cos(λuij + P1n;ij)

+ (1 + cos(2φuij))∆
u
x(λ

c
ij)

N2∑
n=1

A2n sin(2λuij + P2n;ij)

+ sin(2φuij)∆
u
x(φ

c
ij)

N2∑
n=1

A2n cos(2λuij + P2n;ij)

+
3

4
(3 cosφuij + cos(3φuij))∆

u
x(λ

c
ij)

N3∑
n=1

A3n sin(3λuij + P3n;ij)

+
3

4
(sinφuij + sin(3φuij))∆

u
x(φ

c
ij)

N3∑
n=1

A3n cos(3λuij + P3n;ij)
]

(5.242)

and

F t;v
2;ij = −

gvij
hv2;ij

[3

2
sin(2φvij)∆

v
y(φ

c
ij)

N0∑
n=1

A0n cos(P0n;ij)

+ sin(2φvij)∆
v
y(λ

c
ij)

N1∑
n=1

A1n sin(λvij + P1n;ij)

− 2 cos(2φvij)∆
v
y(φ

c
ij)

N1∑
n=1

A1n cos(λvij + P1n;ij)

+ (1 + cos(2φvij))∆
v
y(λ

c
ij)

N2∑
n=1

A2n sin(2λvij + P2n;ij)

+ sin(2φvij)∆
v
y(φ

c
ij)

N2∑
n=1

A2n cos(2λvij + P2n;ij)



232 CHAPTER 5. NUMERICAL METHODS

+
3

4
(3 cosφvij + cos(3φvij))∆

v
y(λ

c
ij)

N3∑
n=1

A3n sin(3λvij + P3n;ij)

+
3

4
(sinφvij + sin(3φvij))∆

v
y(φ

c
ij)

N3∑
n=1

A3n cos(3λvij + P3n;ij)
]

(5.243)

5.3.15 Surface and bottom boundary conditions

5.3.15.1 surface boundary conditions

Application of the surface boundary conditions (4.266) and (4.265) gives

F13;ij,Nz+1 = 0 , F23;ij,Nz+1 = 0 (5.244)

and
D13;ij,Nz+1 = τus1;ij , D23;ij,Nz+1 = τ vs2;ij (5.245)

for respectively the vertical advective and diffusive fluxes of momentum at
the surface.

The components of the surface stress are calculated as function of me-
teorological variables. Different options are available and discussed in Sec-
tion 4.8.

The following steps are taken

• The meteorological data are interpolated at the C-nodes of the model
grid.

• The surface drag coefficient Cds and the components of the surface
stress are determined at the C-nodes.

• The stress components are interpolated at respectively the U- and V-
node.

In the case that the surface drag and exchange are calculated using the
Monin-Obukhov formulation, described in Section 4.8.3, the system of four
equations (4.327), (4.330), (4.331) and (4.332) needs to solved at each model
grid point and time step using a time-consuming iteration procedure. The
following simplifying procedure is taken in the program

• The equations generally depend on five meteorological variables: the
magnitude of the surface wind W , air temperature Ta, sea surface tem-
perature Ts, relative humidity RH and atmospheric pressure Pa. The
following simplications are made
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– The atmospheric pressure enters the equations only indirectly to
evaluate the surface humidity and is taken as constant in the equa-
tions, i.e. Pa = Pref .

– Tests showed a larger dependence on the air minus sea tempe-
rature difference ∆T than on the individual values of Ta and Ts
itself. Letting Ts = Ts;ref one has Ta = Ts;ref + ∆T .

The equations now only depend on three variables: W , ∆T , RH

• The equations are solved for Cds, Ce, Ch on a “discretised” grid at the
initial time

W = Wmin + lδW for l = 0, NW ; NW =
Wmax −Wmin

δW

∆T = ∆Tmin +mδ(∆T ) for m = 0, NT ; NT =
∆Tmax −∆Tmin

δ(∆T )

RH = RHmin + nδRH for n = 0, NR ; NR =
RHmax −RHmin

δR
(5.246)

The following default values are taken

Wmin = 3 , Wmax = 50 , δW = 0.25 (m/s)

∆Tmin = −5 , ∆Tmax = 5 , δ(∆T ) = 1 (0C)

RHmin = 0.5 , RHmax = 1.0 , δR = 0.05 (5.247)

The lower limit Wmin=3 m/s is taken since the equations diverge in the
case of the free-convection limit W → 0 and ∆T > 0. The computed
values are stored in 3-D arrays.

• The values of the drag and exchange coefficients are then obtained at
a specific time by a tri-linear inperpolation from the discretised values.
Extrapolation is used if necessary.

5.3.15.2 bottom boundary conditions

The bottom boundary condition for vertical advection is the same as the one
applied at surface (see equation (4.345)) so that

F13;ij1 = 0 , F23;ij1 = 0 (5.248)

If the bottom stress is parameterised using the bottom values of the 3-D
current, vertical diffusion is treated implicitly. The flux bottom boundary
conditions (4.340) are then discretised as

D13;ij1 = θvk
n;u
b;iju

n+1
ij1 + (1− θv)kn;ub;iju

n
ij1 (5.249)
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D23;ij1 = θvk
n;v
b;ijv

n+1
ij1 + (1− θv)kn;vb;ijv

n
ij1 (5.250)

where θv is the implicity factor for vertical diffusion and the friction velocities
are defined by

no bottom stress (4.337) : kub;ij = kvb;ij = 0
linear bottom stress (4.338) : kub;ij = kvb;ij = klin

3-D quadratic law (4.340) : kub;ij = Cu
db;ij

(
(unij1)

2 + (vn;uij1 )2
)1/2

: kvb;ij = Cv
db;ij

(
(un;vij1 )2 + (vnij1)

2
)1/2

(5.251)
If the bottom stress is expressed in terms of the depth mean current, the
bottom flux is discretised explicitly

D13;ij1 = kn;ub;iju
n
ij (5.252)

D23;ij1 = kn;vb;ijv
n
ij (5.253)

where the friction velocity is given by (5.251) in the absence of a bottom
stress or a linear friction law and

kub;ij = Cu
db;ij

(
(unij)

2 + (vn;uij )2
)1/2

kvb;ij = Cv
db;ij

(
(un;vij )2 + (vnij)

2
)1/2

(5.254)

The bottom drag coefficient is discretised using (5.18)-(5.19) or specified
externally.

5.3.16 Lateral boundary conditions for the 2-D mode

5.3.16.1 open boundary conditions for transports

Open boundary conditions for the 2-D mode are discussed in Section 4.10.1.
The aim is to provide values of U at U- and of V at V-open boundaries.
External data can be generally expressed as the sum of a non-harmonic and
an harmonic part as given by (4.354). The expression is updated at each
time step for the requested locations and variables (U , V or ζ) depending on
the type of conditions, prior to the application of the boundary conditions
itself.

The tidal constituents are selected by the user. In analogy with the
astronomical tide (see Section 5.3.14), the space-independent astronomical
phases are calculated by using either the expressions in Section 4.5 with time
converted to GMT if needed, or the linear approximation

Pm+1
l = V m+1

l + um+1
l ' V m

l + uml + ωlδτ (5.255)
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where ωl are the tidal frequencies. Note that (5.255) is evaluated in double
precision to avoid truncation errors for long integration periods.

The following notations are introduced

• ± or ∓: The upper (lower) sign applies at a western/southern (east-
ern/northern) open boundary.

• Xi:i−1,j: The quantity X is evaluated at grid point (i,j) for a western
and at (i− 1,j) for an eastern boundary.

• Yi,j:j−1: The quantity Y is evaluated at grid point (i,j) for a southern
and at (i,j − 1) for a northern boundary.

• U e
ij, V

e
ij, ζ

e
ij denote externally specified values (harmonic or time series

data).

• sij equals 1 if ζeij is defined at an exterior C-node and 2 if ζeij is defined
at an open boundary U- or V-node.

• The gravity wave speed at the C-node nearest to the U- or V-open
boundary location (i,j) is defined by

cuij =
√
gci:i−1,jH

c
i:i−1,j , cvij =

√
gci,j:j−1H

c
i,j:j−1 (5.256)

• The following auxiliary parameters are defined at U- or V-nodes

αuij =
∆τcuij
hc1;i:i−1,j

, αvij =
∆τcvij
hc2;i,j:j−1

(5.257)

ruij =
hc1;i:i−1,j
hu1;ij

, rvij =
hc2;i,j:j−1
hv2;ij

(5.258)

The discretised versions of all available open boundary conditions are
listed below using the same numbering system as in Section 4.10.1.

0. Clamped (see equation (4.357)).

Um+1
ij = Um

ij , V m+1
ij = V m

ij (5.259)

1. Zero slope (see equation (4.358)).

Um+1
ij = Um

ij + ∆τ
(
fuij(θcV

m+1;c
i:i−1,j + (1− θc)V m;c

i:i−1,j)
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+Hm+1;u
ij F t;m+1

1;ij + τ cs1;ij − τ
n;u
b1;ij

)
(5.260)

V m+1
ij = V m

ij −∆τ
(
f vij(θcU

m+1;c
i,j:j−1 + (1− θc)Um;c

i,j:j−1)

−Hm+1;v
ij F t;m+1

2;ij − τ cs2;ij + τn;ub2;ij

)
(5.261)

Note that the bottom stress components are evaluated at the old time
tn.

2. Zero volume flux (see equation (4.359)).

Um+1
ij = Um+1

i+1:i−1,j , V m+1
ij = V m+1

i,j+1:j−1 (5.262)

3. Specified elevation (see (equation 4.360)).

Um+1
ij = UL;m+1

ij

= UL;m
ij ∓ suijαuijcuijruij(ζm+1

i:i−1,j − ζeij)

+ ∆τ
(
fuij(θcV

m+1;c
i:i−1,j + (1− θc)V m;c

i:i−1,j)

+Hm+1;u
ij F t;m+1

1;ij + τ cs1;ij − τ
n;u
b1;ij

)
(5.263)

V m+1
ij = V L;m+1

ij

= V L;m
ij ∓ svijαvijcvijrvij(ζm+1

i,j:j−1 − ζeij)

−∆τ
(
f vij(θcU

m+1;c
i,j:j−1 + (1− θc)V m;c

i,j:j−1)

−Hm+1;v
ij F t;m+1

2;ij − τ cs2;ij + τn;vb2;ij

)
(5.264)

4. Specified transport (see equation (4.361)).

Um+1
ij = U e

ij , V m+1
ij = V e

ij (5.265)

5. Radiation condition using shallow water speed (see equation (4.363)).

Um+1
ij =

Um
ij + αuijU

m+1
i+1:i−1,j

1 + αuij

V m+1
ij =

V m
ij + αvijV

m+1
i,j+1:j−1

1 + αvij
(5.266)
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6. Orlanski (1976) condition (see equation (4.364)).

Um+1
ij =

(
1−OR(ru1;ij, r

u
2;ij, r

u
3,ij)
)
Um
ij +OR(ru1;ij, r

u
2;ij, r

u
3,ij)U

m
i+1:i−1,j

(5.267)

V m+1
ij =

(
1−OR(rv1;ij, r

v
2;ij, r

v
3,ij)
)
V m
ij +OR(rv1;ij, r

v
2;ij, r

v
3,ij)V

m
i,j+1:j−1

(5.268)

The Orlanski weight function is defined by

OR(r1, r2, r3) = min
(

max(
r1 − r2
r3 − r2

, 0), 1
)

if r2 6= r3

OR(r1, r2, r3) = 0 if r2 = r3 and r1 ≤ r2
OR(r1, r2, r3) = 1 if r2 = r3 and r1 > r2

(5.269)
The arguments of the weight functions are defined by

ru1;ij = Um
i+1:i−1,j , ru2;ij = Um−1

i+1:i−1,j , ru3;ij = Um−1
i+2:i−2,j (5.270)

rv1;ij = V m
i,j+1:j−1 , rv2;ij = V m−1

i,j+1:j−1 , rv3;ij = V m−1
i,j+2:j−2 (5.271)

7. Camerlengo & O’Brien (1980).

Um+1
ij = Um

i+1:i−1,j if Um
i+1:i−1,j ≥ Um−1

i+2:i−2,j
Um+1
ij = Um

ij otherwise
(5.272)

V m+1
ij = V m

i,j+1:j−1 if V m
i,j+1:j−1 ≥ V m−1

i,j+2:j−2
V m+1
ij = V m

ij otherwise
(5.273)

8. Flather (1976) with specified elevation and transport (see equation
(4.366)).

Um+1
ij = U e

ij ∓
1

2
suijc

u
ij(ζ

m+1
i:i−1,j − ζeij)

V m+1
ij = V e

ij ∓
1

2
svijc

v
ij(ζ

m+1
i,j:j−1 − ζeij) (5.274)

9. Flather (1976) with specified elevation (see equation (4.367)).

Um+1
ij = UL;m+1

ij ∓ 1

2
suijc

u
ij(ζ

m+1
i:i−1,j − ζeij)

V m+1
ij = V L;m+1

ij ∓ 1

2
svijc

v
ij(ζ

m+1
i,j:j−1 − ζeij) (5.275)

where UL, V L are the local solutions obtained from (5.263) and (5.264).
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10. Røed & Smedstad (1984) (see equations (4.368)—(4.369)).

The local solution for ζ is determined from

ζL;m+1
ij = ζL;mij −

∆τ(hv1;i:i−1,j+1V
m
i:i−1,j+1 − hv1;i:i−1,jV m

i:i−1,j)

hc1;i:i−1,jh
c
2;i:i−1,j

(5.276)

at U-nodes, and

ζL;m+1
ij = ζL;mij −

∆τ(hu2;i+1,j:j−1U
m
i+1,j:j−1 − hu2;i,j:j−1Um

i,j:j−1)

hc1;i,j:j−1h
c
2;i,j:j−1

(5.277)

at V-nodes.

The transports U and V are obtained using

Um+1
ij = UL;m+1

ij ∓ cuij(ζm+1
i:i−1,j − ζ

L;m+1
ij ) (5.278)

V m+1
ij = V L;m+1

ij ∓ cvij(ζm+1
i,j:j−1 − ζ

L;m+1
ij ) (5.279)

where the local solutions UL;m+1
ij , UL;m+1

ij are given by (5.263) and
(5.264).

11. Characteristic method with specified elevation and transport.

Using the notations of Section 4.10.1 the transports are calculated as
the average between the incoming (Ri) and outgoing (Ro) characteristic

Um+1
ij =

1

2
(Rm+1;u

i;ij +Rm+1;u
o;ij )

V m+1
ij =

1

2
(Rm+1;v

i;ij +Rm+1;v
o;ij ) (5.280)

The incoming characteristic Ri is defined by equations (4.373) using
prescribed values for transports and elevations

Rm+1;u
i;ij = U e

ij ±
1

2
cuijs

u
ij

(
ζeij + (2− suij)ζm+1

i:i−1,j

)
Rm+1;v
i;ij = V e

ij ±
1

2
cvijs

v
ij

(
ζeij + (2− svij)ζm+1

i,j:j−1

)
(5.281)

The outgoing characteristic Ri is obtained by solving the discretised
versions of equations (4.371)–(4.372):

(1 +
3

2
αuijr

u
ij)R

m+1;u
o;ij = Rm;u

o;ij

+ αuijr
u
ij(U

m+1
i+1:i−1,j +

1

2
Rm+1;u
i;ij ∓ 2cuijζ

m+1
i:i−1,j)
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+
αuij

hc2;i:i−1,j

(
±(hv1;i:i−1,j+1V

m
i:i−1,j+1 − hv1;i:i−1,jV m

i:i−1,j)

+ Um;c
i:i−1,j(h

u
2;i+1:i−1,j − hu2;ij)

)
+∆τ

(
fuij(θcV

m+1;c
i:i−1,j + (1− θc)V m;c

i:i−1,j) +Hm+1;u
ij F t;m+1

1;ij + τ cs1;ij − τ
n;u
b1;ij

)
(5.282)

and

(1 +
3

2
αvijr

v
ij)R

m+1;v
o;ij = Rm;v

o;ij

+ αvijr
v
ij(V

m+1
i,j+1:j−1 +

1

2
Rm+1;v
i;ij ∓ 2cvijζ

m+1
i,j:j−1)

+
αvij

hc1;i,j:j−1

(
±(hu2;i+1,j:j−1U

m
i+1,j:j−1 − hu2;i,j:j−1Um

i,j:j−1)

+ V m;c
i,j:j−1(h

v
1;i,j+1:j−1 − hv1;ij)

)
−∆τ

(
f vij(θcU

m+1;c
i,j:j−1 + (1− θc)Um;c

i,j:j−1)−H
m+1;v
ij F t;m+1

2;ij − τ cs2;ij + τn;vb2;ij

)
(5.283)

Note that the propagation term is integrated fully implicitly and Um+1
ij ,

V m+1
ij have been eliminated in (5.282)–(5.283) by substituting forRm+1;u

i

and Rm+1;v
i from (5.281).

12. Characteristic method with specified elevation.

The method is as previous with U e
ij, V

e
ij replaced by the local solutions

UL;m+1
ij , V L;m+1

ij from (5.263) and (5.264).

13. Characteristic method using zero normal gradient.

The method is the same as previous except that the incoming character-
istics are obtained as solutions of the discretised versions of equations
(4.375)–(4.376):

Rm+1;u
i;ij = Rm;u

i;ij

−
αuij

hc2;i:i−1,j

(
±(hv1;i:i−1,j+1V

m
i:i−1,j+1 − hv1;i:i−1,jV m

i:i−1,j)

+ U c;m
i:i−1,j(h

u
2;i+1:i−1,j − hu2;ij)

)
+ ∆τ

(
fuij(θcV

m+1;c
i:i−1,j + (1− θc)V m;c

i:i−1,j) +Hm+1;u
ij F t;m+1

1;ij + τ cs1;ij − τ
n;u
b1;ij

)
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(5.284)

and

Rm+1;v
i;ij = Rm;v

i;ij

−
αvij

hc1;i,j:j−1

(
±(hu2;i+1,j:j−1U

m
i+1,j:j−1 − hu2;i,j:j−1Um

i,j:j−1)

+ V c;m
i,j:j−1(h

v
1;i,j+1:j−1 − hv1;ij)

)
−∆τ

(
f vij(θcU

m+1;c
i,j:j−1 + (1− θc)Um;c

i,j:j−1)−H
m+1;v
ij F t;m+1

2;ij − τ cs2;ij + τn;vb2;ij

)
(5.285)

5.3.16.2 open boundary conditions for 2-D advective and diffusive
fluxes

Two schemes are available to evaluate the cross-stream advective fluxes in the
U -equation at Y-open boundaries or in the V -equation at X-open boundaries

1. The first one uses a zero gradient condition

F
uv

12;ij = F
uv

12;i,j+1:j−1 or F
uv

21;ij = F
uv

21;i+1:i−1,j (5.286)

which is the same as before.

2. The flux is determined using the upwind scheme (where possible). This
means that

F
uv

12;ij =
1

2
vuvij

(
(1 + sij)Ui,j−1:j + (1− sij)Ui,j:j−1

)
or

F
uv

21;ij =
1

2
uuvij

(
(1 + sij)Vi−1:i,j + (1− sij)Vi:i−1,j

)
(5.287)

where sij = 1 in case of an inflow condition and either

• (i,j-1:j) is a U-open boundary or (i-1:i,j) is a V-open boundary

• (i-1,j) is a closed (land or coastal) V-node or (i,j-1) is a closed
(land or coastal) U-node

• (i,j) is a closed V-node or (i,j) is a closed U-node.

In all other cases, sij = −1.

The cross-stream diffusive fluxes in the U -equation are avaluated as fol-
lows
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• If either (i,j-1:j) is a U-open boundary, or (i-1,j) is a closed (land or
coastal) V-node, or (i,j) is a closed V-node, the flux is calculated by
equation (5.199) for an internal node.

• Otherwise, if (i,j-1:j) is an interior U-node, a zero gradient condition
is used

D
uv

12;ij = D
uv

12;i,j+1:j−1 (5.288)

• Otherwise, the flux is set to zero, i.e.

D
uv

12;ij = 0 (5.289)

Likewise, at the fluxes in the V -equation are given by

• If either (i-1:i,j) is a V-open boundary, or (i,j-1) is a closed (land or
coastal) U-node, or (i,j) is a closed U-node, the flux is calculated by
equation (5.201) for an internal node.

• Otherwise, if (i-1:i,j) is an interior V-node, a zero gradient condition
is used

D
uv

21;ij = D
uv

21;i,j+1:j−1 (5.290)

• Otherwise, the flux is set to zero, i.e.

D
uv

21;ij = 0 (5.291)

An optional relaxation scheme has been implemented which reduces the
impact of advection within a user-defined distance from the open boundaries.
In that case, the advective terms are multiplied by the relaxation factor

αor = min(d/dmax, 1) (5.292)

where d is the distance to the nearest open boundary. Experiments showed
that, with an appropriate choice of the maximum relaxation distance dmax,
instabilities, due to inaccuracies at the open boundaries, are prevented to
propagate into the domain. The scheme has shown to be useful, in particular,
to reduce instabilities, observed near ragged open boundaries.

5.3.16.3 boundary conditions at closed lateral boundaries

Following (4.392)–(4.393) one has

Uij = 0 , Vij = 0 (5.293)
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at coastal boundaries.
Likewise all fluxes for the cross-advective and diffusive terms are set to

zero at closed Y- or X-node boundaries:

F
uv

12;ij = 0.0 , D
uv

12;ij = 0.0 , F
uv

21;ij = 0.0 , D
uv

21;ij = 0.0 (5.294)

where a Y- or X-node grid point is called “closed” if one of the neighbouring
V- or U-node points in the X- or Y-direction is a closed velocity node.

5.3.17 Lateral boundary conditions for the 3-D cur-
rents

5.3.17.1 open boundary conditions for horizontal 3-D currents

Open boundary conditions for the 3-D mode are discussed in Section 4.10.2.1.
The aim is to provide values of u at U- and of v at V-open boundaries for each
vertical level. The depth-mean parts of the currents are already determined
by the 2-D open boundary conditions which means than only the baroclinic
parts δu and δv need to be specified.

The discretised versions of all open available open boundary conditions
are listed below using the same numbering system as in Section 4.10.2.1.

0. Zero gradient condition (see equation (4.377)).

δun+1
ijk =

hu2;i+1:i−1,jh
n+1;u
3;i+1:i−1,jk

hu2;ijh
n+1;u
3;ijk

δun+1;u
i+1:i−1,jk (5.295)

δvn+1
ijk =

hv1;i,j+1:j−1h
n+1;v
3;i,j+1:j−1,k

hv1;ijh
n+1;v
3;ijk

δvn+1;v
i,j+1:j−1,k (5.296)

This is the default condition.

1. Specified external profile (see equation (4.378)).

δun+1
ijk = δueijk (5.297)

δvn+1
ijk = δveijk (5.298)

(5.299)

2. Second order gradient condition (see equation (4.379))

δui =
hu2;i+1:i−1

hu2;i

hu3;i+1:i−1

hu3;i

(
1 +

hc1;i:i−1
hc1;i+1:i−2

hc2;i:i−1
hc2;i+1:i−2

)
δui+1:i−1
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−
hu2;i+2:i−2

hu2;i

hu3;i+2:i−2

hu3;i

hc1;i:i−1
hc1;i+1:i−2

hc2;i:i−1
hc2;i+1:i−2

δui+2:i−2 (5.300)

δvi =
hv1;j+1:j−1

hv1;j

hv3;j+1:j−1

hv3;j

(
1 +

hc2;j:j−1
hc2;j+1:j−2

hc1;j:j−1
hc1;j+1:j−2

)
δvj+1:j−1

−
hv1;j+2:j−2

hv1;j

hv3;j+2:j−2

hv3;j

hc2;j:j−1
hc2;j+1:j−2

hc1;j:j−1
hc1;j+1:j−2

δvj+2:j−2 (5.301)

(5.302)

3. Local solution

hn+1;u
3;ik δun+1

ik − h
n;u
3;ikδu

n
ik

hn+1;u
3;ik

= f
(
θcv

n+1;c
ik − (1− θc)vn;cik

)
(5.303)

+ F b;n
1;i+1:i−1,k −

F
b;n

1;i+1:i−1,k

Hn+1;u
i+1:i−1

+
Duw

13;ij,k+1 −Duw
13;ik

hu3;i
+
τb1;i − τs1;i
Hn+1;u
i

hn+1;v
3;jk δvn+1;c

jk − hn;v3;jkδv
n;c
jk

hn+1;v
3;jk

= −f
(
θcu

n+1;c
jk − (1− θc)un;cjk

)
(5.304)

+ F b;n
2;j+1:j−1,k −

F
b;n

2;j+1:j−1,k

Hn+1;v
j+1:j−1

+
Dvw

23;j,k+1 −Dvw
23;jk

hv3;jk
+
τb2;j − τs2;j
Hn+1;v
j

The diffusive fluxes are obtained from (5.210), (5.212) using the condi-
tion (5.245) at the surface and the bottom stress formulations given in
Section 5.3.15.2.

4. Radiation condition using the baroclinic wave speed (see equation (4.382)).

δun+1
ijk = (1− wuijk)δunijk + wuijkδu

n
i+1:i−1,jk (5.305)

δvn+1
ijk = (1− wvijk)δvnijk + wvijkδv

n
i,j+1:j−1,k (5.306)

The weight factors are given by

wuijk = ± R∆t

hc1;i:i−1,j

√
gci:i−1,jH

n+1;c
i:i−1,j

wvijk = ± R∆t

hc2;i,j:j−1

√
gci,j:j−1H

n+1;c
i,j:j−1 (5.307)

where R is the prescribed ratio of the baroclinic to surface gravity wave
speed. Default value is 0.03.
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5. Orlanski condition (see equation (4.383)).

In analogy with the 2-D case one has

δun+1
ijk =

(
1−OR(ru1;ijk, r

u
2;ijk, r

u
3;ijk

)
δunijk+OR(ru1;ijk, r

u
2;ijk, r

u
3;ijk)δu

n
i+1:i−1,jk

(5.308)

δvn+1
ijk =

(
1−OR(rv1;ijk, r

v
2;ijk, r

v
3;ijk)

)
δvnijk+OR(rv1;ijk, r

v
2;ijk, r

v
3;ijk)δv

n
i,j+1:j−1,k

(5.309)
where the Orlanski function OR is defined by (5.269) and

ru1;ijk = δuni+1:i−1,jk , ru2;ijk = δun−1i+1:i−1,jk , ru3;ijk = δun−1i+2:i−2,jk
(5.310)

rv1;ijk = δvni,j+1:j−1,k , rv2;ijk = δvn−1i,j+1:j−1,k , rv3;ijk = δvn−1i,j+2:j−2,k
(5.311)

Once the baroclinic and mean components are known, the full 3-D cur-
rents are determined by adding the two components

un+1
ijk = Un+1

ij /Hn+1;c
i+1:i−1,j + δun+1

ijk , vn+1
ijk = V n+1

ij /Hn+1;c
i,j+1:j−1 + δvn+1

ijk (5.312)

5.3.17.2 open boundary conditions for the advective and diffusive
fluxes of the 3-D currents

The formulations are identical to the one given in Section 5.3.16.2, except
that the fluxes now include an additional k-index.

5.3.17.3 boundary conditions for the 3-D mode at closed lateral
boundaries

The formulations are identical to the one given in Section 5.3.16.3, except
that the fluxes now include an additional k-index. They are given for com-
pleteness.

Following (4.392)–(4.393) one has

uijk = 0 , vijk = 0 (5.313)

at coastal boundaries.
Likewise all fluxes for the cross-advective and diffusive terms are set to

zero at closed Y- or X-node boundaries:

F uv
12;ijk = 0.0 , Duv

12;ijk = 0.0 , F uv
21;ijk = 0.0 , Duv

21;ijk = 0.0 (5.314)
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5.3.18 Solution of the discretised equations for mo-
mentum

In the case of a 3-D current the discretised transport equations reduce to a
system of linear equations of the form

Bij1X
new
ij1 + Cij1X

new
ij2 = Dij1(X

old)
AijkX

new
ij,k−1 + BijkX

new
ijk + CijkX

new
ij,k+1 = Dijk(X

old)
Aij,NzX

new
ij,Nz−1 + BijNzX

new
ijNz

= DijNz(X
old)

(5.315)

where Xold and Xnew are the values of the values of the current (u or v) at
the “old” and “new” time step. Equations (5.315) form a tridiagonal matrix
system in the vertical, which has to be solved at each horizontal grid point
(i,j).

Omitting the i and j indices for simplicity, the elements Ak, Bk and Ck
can be written as the sum of different components, each representing partic-
ular term(s) in the corresponding momentum equation. Explicit expressions
are given below for the update of u at the predictor step without opera-
tor splitting, as given by equation (5.7) or (5.31) so that Xold = un and
Xnew = up. They are easily extended to the case for v-equation.

When operator splitting is used, four of the six steps are explicit inte-
grations in which case the solution is straigtforward. The two steps (5.58),
(5.59) involving implicit terms are treated in a similar way.

The discretised 2-D equations for transports are written as

BijX
new
ij = DijX

old
ij (5.316)

The composition of the B- and D-matrices is readily obtained from the dis-
cretisation formulae in the preceding sections and is not given here. The
solution of (5.316) is straightforward.

5.3.18.1 composition of the tridiagonal matrix

1. Time derivative.

The contribution of the time derivative is given by

Atk = 0 , Bt
k = 1 , Ct

k = 0 , Dt
k = unk (5.317)

where 1 ≤ k ≤ Nz.

2. Vertical advection.
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The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

A
a−
k = −θac−k (αk + fk)

B
a−
k = −θac−k (βk − fk)

C
a−
k = 0

D
a−
k = (1− θa)c−k

(
(αk + fk)u

n
k−1 + (βk − fk)unk

)
(5.318)

where 2 ≤ k ≤ Nz,

c−k =
∆tωuwk
2hu3;k

, fk =
(

1− Ω(ruwk )
)
sk (5.319)

and αijk, βijk, sijk, r
uw
ijk are defined by (5.172) and (5.173).

The terms arising from the flux above the k-level, are

A
a+
k = 0

B
a+
k = θac

+
k (αk+1 + fk+1)

C
a+
k = θac

+
k (βk+1 − fk+1)

D
a+
k = −(1− θa)c+k

(
(αk+1 + fk+1)u

n
k + (βk+1 − fk+1)u

n
k+1

)
(5.320)

where 1 ≤ k ≤ Nz − 1 and

c+k =
∆tωuwk+1

2hu3;k
(5.321)

3. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

A
d−
k = −θv

∆tνuwT ;k
hu3;kh

uw
3;k

B
d−
k = θv

∆tνuwT ;k
hu3;kh

uw
3;k

C
d−
k = 0

D
d−
k = −(1− θv)

∆tνuwT ;k
hu3;kh

uw
3;k

(unk − unk−1) (5.322)
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where 2 ≤ k ≤ Nz.

The terms taken from the flux above the k-level, are

A
d+
k = 0

B
d+
k = θv

∆tνuwT ;k+1

hu3;kh
uw
3;k+1

C
d+
k = −θv

∆tνuwT ;k+1

hu3;kh
uw
3;k+1

D
d+
k = (1− θv)

∆tνuwT ;k+1

hu3;kh
uw
3;k+1

(unk+1 − unk) (5.323)

where 1 ≤ k ≤ Nz − 1.

4. Other explicit terms.

All other terms are explicit. Their contributions can be written as

Aek = Be
k = Ce

k = 0

De
k = ∆t

(
O1;k − Ãh1(u)nk − Ãh2(u)nk +Dmh1(τ11)n;uk +Dmh2(τ12)n;uk

)
(5.324)

with O1;k defined by (5.63).

5. Surface boundary conditions.

The contributions arising from the surface boundary conditions (5.244)
for advection and (5.245) for diffusion are added to the highest level:

A
a+
Nz

= B
a+
Nz

= C
a+
Nz

= D
a+
Nz

= 0

A
d+
Nz

= B
d+
Nz

= C
d+
Nz

= 0

D
d+
Nz

=
∆tτus1
hu3;Nz

(5.325)

6. Bottom boundary conditions.

The contributions arising from the bottom boundary conditions (5.248)
for advection are added to the lowest level:

A
a−
1 = B

a−
1 = C

a−
1 = D

a−
1 = 0 (5.326)

The bottom contributions for vertical diffusion depends on whether the
bottom stress is expressed as function of the bottom current (equation
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(5.249))

A
d−
1 = C

d−
1 = 0 , B

d−
1 = θv

∆tkub
hu3;1

, D
d−
1 = −(1− θv)

∆tkub u
n
1

hu3;1
(5.327)

or the depth mean current (equation (5.252))

A
d−
1 = B

d−
1 = C

d−
1 = 0 , D

d−
1 = −∆tkub u

n

hu3;1
(5.328)

where the friction velocity is calculated using (5.251) or (5.254).

5.3.18.2 solution of tridiagonal systems

Tridiagonal matrix systems of the form (5.315) are solved using the algorithm,
described in Press et al. (1992):

β1 = B1 , X
?
1 = D1/β1

γk = Ck−1/βk−1 , βk = Bk − Akγk , X?
k = (Dk − AkX?

k−1)/βk

for k = 2, · · · , Nz

Xnew
Nz = X?

Nz

Xnew
k = X?

k − γk+1X
new
k+1 for k = Nz − 1, · · · , 1 (5.329)

5.3.19 Elliptic equation for the free surface correction

When the implicit method for the surface slope term in the momentum equa-
tions is taken, an elliptic equation is obtained for the free surface correction
ζ ′. The discretised form of this equation is written in the form (5.37). The
matrices A to G are evaluated in two phases:

1. The transports are first taken at interior wet points only and set to
zero at solid and open boundaries.

2. The explicit and implicit terms arising by applying the open boundary
condition are added.

5.3.19.1 interior terms

Defining

puij = ∆tµuijg
u
ijH

n+1,it;u
ij

hu2;ij
hu1;ij

, pvij = ∆tµvijg
v
ijH

n+1,it;v
ij

hv1;ij
hv2;ij

(5.330)
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where µ equals 1 at wet interior nodes and 0 at solid or open boundary
velocity nodes, the coefficients of the elliptic matrix equation (5.37) become

Aij = −puij , Bij = −pvij , Dij = −pvi,j+1 , Eij = −pui+1,j

Cij =
hc1;ijh

c
2;ij

∆t
+ pui+1,j + puij + pvi,j+1 + pvij

Fij =
hc1;ijh

c
2;ij

∆t
(ζnij − ζn+1,it)− hu2;i+1,jµ

u
i+1,jU

p
i+1,j + hu2;ijµ

u
ijU

p
ij

−hv1;i,j+1µ
v
i,j+1V

p
i,j+1 + hv1;ijµ

v
ijV

p
ij

(5.331)

5.3.19.2 open boundary terms

From the discetised forms of the open boundary conditions additional terms
are added to the coefficient matrices. They are described below for each
type of open boundary condition using the notations introduced in Sec-
tion 5.3.16.1. The following definitions are made in addition

mu
ij = ∆tgui+1:i−1,jH

n+1,it;u
i+1:i−1,j

hu2;ij
hu1;i+1:i−1,j

mv
ij = ∆tgvi,j+1:j−1H

n+1,it;v
i,j+1:j−1

hv1;ij
hv2;i,j+1:j−1

(5.332)

βuij =
1

1 + 1.5αuijr
u
ij

, βvij =
1

1 + 1.5αvijr
v
ij

(5.333)

Ou
ij = ∆t(fuijV

c
i:i−1 +Hn+1,it;u

ij F t;n+1
1;ij + τ cs1;ij − τ

n;u
b1;ij)

Ov
ij = ∆t(−f vijU c

i,j:j−1 +Hn+1,it;v
ij F t;n+1

2;ij + τ cs2;ij − τ
n;v
b2;ij)

(5.334)

0. Clamped

Fi:i−1,j = Fi:i−1,j ± hu2;ijUn
ij

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV n
ij (5.335)

1. Zero slope

Fi:i−1,j = Fi:i−1,j ± hu2;ij(Un
ij +Ou

ij)

Fi,j:j−1 = Fi,j:j−1 ± hv1;ij(V n
ij +Ov

ij) (5.336)
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2. Zero volume flux

Fi:i−1,j = Fi:i−1,j ± hu2;ijU
p
i+1:i−1,j

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV
p
i,j+1:j−1 (5.337)

Ci:i−1,j = Ci:i−1,j − hu2;ijmu
ij

Ci,j:j−1 = Ci,j:j−1 − hv1;ijmv
ij (5.338)

West : Eij = Eij + hu2;ijm
u
ij

East : Ai−1,j = Ai−1,j + hu2;ijm
u
ij

South : Dij = Dij + hv1;ijm
v
ij

North : Bi,j−1 = Bi,j−1 + hv1;ijm
v
ij (5.339)

3. Specified elevation

UL;n+1,it
ij = UL;n

ij ∓ suijαuijcuijruij(ζ
n+1,it
i:i−1,j − ζeij) +Ou

ij

V L;n+1,it
ij = V L;n

ij ∓ svijαvijcvijrvij(ζ
n+1,it
i,j:j−1 − ζeij) +Ov

ij

(5.340)

Fi:i−1,j = Fi:i−1,j ± hu2;ijU
L;n+1,it
ij

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV
L;n+1,it
ij (5.341)

Ci:i−1,j = Ci:i−1,j + hu2;ijs
u
ijα

u
ijc

u
ijr

u
ij

Ci,j:j−1 = Ci,j:j−1 + hv1;ijs
v
ijα

v
ijc

v
ijr

v
ij (5.342)

4. Specified transport

Fi:i−1,j = Fi:i−1,j ± hu2;ijU e
ij

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV e
ij (5.343)

5. Radiation condition using shallow water speed

Fi:i−1,j = Fi:i−1,j ± hu2;ij
Un
ij + αuijU

p
i+1:i−1,j

1 + αuij

Fi,j:j−1 = Fi,j:j−1 ± hv1;ij
V n
ij + αvijV

p
i,j+1:j−1

1 + αvij
(5.344)
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Ci:i−1,j = Ci:i−1,j −
hu2;ijm

u
ijα

u
ij

1 + αuij

Ci,j:j−1 = Ci,j:j−1 −
hv1;ijm

v
ijα

v
ij

1 + αvij
(5.345)

West : Eij = Eij +
hu2;ijm

u
ijα

u
ij

1 + αuij

East : Ai−1,j = Ai−1,j +
hu2;ijm

u
ijα

u
ij

1 + αuij

South : Dij = Dij +
hv1;ijm

v
ijα

v
ij

1 + αvij

North : Bi,j−1 = Bi,j−1 +
hv1;ijm

v
ijα

v
ij

1 + αvij
(5.346)

6. Orlanski (1976) condition

Fi:i−1,j = Fi:i−1,j ± hu2;ij
(

1−OR)Un
ij +ORU

n
i+1:i−1,j

)
Fi,j:j−1 = Fi,j:j−1 ± hv1;ij

(
1−OR)V n

ij +ORV
n
i,j+1:j−1

)
(5.347)

where the Orlanski weight function is defined by (5.269)–(5.271) at U-
and V-nodes.

7. Camerlengo & O’Brien (1980)

Fi:i−1,j = Fi:i−1,j ± hu2;ijUn
i+1:i−1,j if Un

i+1:i−1,j ≥ Un−1
i+2:i−2,j

Fi:i−1,j = Fi:i−1,j ± hu2;ijUn
ij otherwise

(5.348)

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV n
i,j+1:j−1 if V n

i,j+1:j−1 ≥ V n−1
i,j+2:j−2

Fi,j:j−1 = Fi,j:j−1 ± hv1;ijV n
ij otherwise

(5.349)

8. Flather (1976) with specified elevation and transport

Fi:i−1,j = Fi:i−1,j ± hu2;ij
(
U e
ij ∓

1

2
suijc

u
ij(ζ

n+1,it
i:i−1,j − ζeij)

)
Fi,j:j−1 = Fi,j:j−1 ± hv1;ij

(
V e
ij ∓

1

2
svijc

v
ij(ζ

n+1,it
i,j:j−1 − ζeij)

)
(5.350)

Ci:i−1,j = Ci:i−1,j +
1

2
hu2;ijs

u
ijc

u
ij

Ci,j:j−1 = Ci,j:j−1 +
1

2
hv1;ijs

v
ijc

v
ij (5.351)
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9. Flather (1976) with specified elevation

Fi:i−1,j = Fi:i−1,j ± hu2;ij
(
UL;n+1,it
ij ∓ 1

2
suijc

u
ij(ζ

n+1,it
i:i−1,j − ζeij)

)
Fi,j:j−1 = Fi,j:j−1 ± hv1;ij

(
V L;n+1,it
ij ∓ 1

2
svijc

v
ij(ζ

n+1,it
i,j:j−1 − ζeij)

)
(5.352)

where the local solutions (UL;n+1,it,V L;n+1,it) are determined by (5.340).

Ci:i−1,j = Ci:i−1,j + hu2;ijs
u
ijc

u
ij(

1

2
+ αuijr

u
ij)

Ci,j:j−1 = Ci,j:j−1 + hv1;ijs
v
ijc

v
ij(

1

2
+ αvijr

v
ij) (5.353)

10. Røed & Smedstad (1984)

ζL;n+1,it
ij = ζL;nij −

∆t(hv1;i:i−1,j+1V
n
i:i−1,j+1 − hv1;i:i−1,jV n

i:i−1,j)

hc1;i:i−1,jh
c
2;i:i−1,j

ζL;n+1,it
ij = ζL;nij −

∆t(hu2;i+1,j:j−1U
n
i+1,j:j−1 − hu2;i,j:j−1Un

i,j:j−1)

hc1;i,j:j−1h
c
2;i,j:j−1

(5.354)

Fi:i−1,j = Fi:i−1,j ± hu2;ij
(
UL;n+1,it
ij − suijcuij(ζ

n+1,it
i:i−1,j − ζ

L;n+1,it
ij )

)
Fi,j:j−1 = Fi,j:j−1 ± hv1;ij

(
V L;n+1,it
ij − svijcvij(ζ

n+1,it
i,j:j−1 − ζ

L;n+1,it
ij )

)
(5.355)

Ci:i−1,j = Ci:i−1,j + hu2;ijc
u
ij(1 + suijα

u
ijr

u
ij)

Ci,j:j−1 = Ci,j:j−1 + hv1;ijc
v
ij(1 + svijα

v
ijr

v
ij) (5.356)

11. Characteristic method with specified elevation and transport

Rn+1,it;u
i;ij = U e

ij ±
1

2
suijc

u
ij

(
ζeij + (2− suij)ζ

n+1;it
i:i−1,j

)
Rn+1,it;v
i;ij = V e

ij ±
1

2
svijc

v
ij

(
ζeij + (2− svij)ζ

n+1,it
i,j:j−1

)
(5.357)

(1 +
3

2
αuijr

u
ij)R

n+1,it;u
o;ij = Rn;u

o;ij
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+ αuijr
u
ij(U

p
i+1:i−1,j +

1

2
Rn+1,it;u
i;ij ∓ 2cuijζ

n+1,it
i:i−1,j)

+
αuij

hc2;i:i−1,j

(
±(hv1;i:i−1,j+1V

n
i:i−1,j+1 − hv1;i:i−1,jV n

i:i−1,j)

+ Un;c
i:i−1,j(h

u
2;i+1:i−1,j − hu2;ij)

)
+Ou

ij (5.358)

and

(1 +
3

2
αvijr

v
ij)R

n+1,it;v
o;ij = Rn;v

o;ij

+ αvijr
v
ij(V

p
i,j+1:j−1 +

1

2
Rn+1,it;v
i;ij ∓ 2cvijζ

n+1,it
i,j:j−1)

+
αvij

hc1;i,j:j−1

(
±(hu2;i+1,j:j−1U

n
i+1,j:j−1 − hu2;i,j:j−1Un

i,j:j−1)

+ V n;c
i,j:j−1(h

v
1;i,j+1:j−1 − hv1;ij)

)
+Ov

ij (5.359)

Fi:i−1,j = Fi:i−1,j ±
1

2
hu2;ij

(
Rn+1,it;u
i;ij +Rn+1,it;u

o;ij

)
Fi,j:j−1 = Fi,j:j−1 ±

1

2
hv1;ij

(
Rn+1,it;v
i;ij +Rn+1,it;v

o;ij

)
(5.360)

Ci:i−1,j = Ci:i−1,j −
1

4
hu2;ijs

u
ijc

u
ij(2− suij)(1 +

1

2
αuijr

u
ijβ

u
ij)

+ hu2;ijα
u
ijc

u
ijr

u
ijβ

u
ij −

1

2
αuijr

u
ijβ

u
ijm

u
ij (5.361)

Ci,j:j−1 = Ci,j:j−1 −
1

4
hv1;ijs

v
ijc

v
ij(2− svij)(1 +

1

2
αvijr

v
ijβ

v
ij)

+ hv1;ijα
v
ijc

v
ijr

v
ijβ

v
ij −

1

2
αvijr

v
ijβ

v
ijm

v
ij (5.362)

West : Eij = Eij +
1

2
hu2;ijα

u
ijr

u
ijβ

u
ijm

u
ij

East : Ai−1,j = Ai−1,j +
1

2
hu2;ijα

u
ijr

u
ijβ

u
ijm

u
ij

South : Dij = Dij +
1

2
hv1;ijα

v
ijr

v
ijβ

v
ijm

v
ij

North : Bi,j−1 = Bi,j−1 +
1

2
hv1;ijα

v
ijr

v
ijβ

v
ijm

v
ij (5.363)
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12. Characteristic method with specified elevation

The discretisations are the same as in the previous case with (U e
ij,V

e
ij)

replaced by (UL;n+1,it
ij ,V L;n+1,it

ij ).

13. Characteristic method using zero normal gradient

The discretisations are the same as in the previous case with (Rn+1,it;u
i;ij ,Rn+1,it,v

i;ij )
defined by

Rn+1,it;u
i;ij = Rn;u

i;ij

−
αuij

hc2;i:i−1,j

(
±(hv1;i:i−1,j+1V

n
i:i−1,j+1 − hv1;i:i−1,jV n

i:i−1,j)

+ U c;m
i:i−1,j(h

u
2;i+1:i−1,j − hu2;ij)

)
+Ou

ij (5.364)

and

Rn+1,it;v
i;ij = Rn;v

i;ij

−
αvij

hc1;i,j:j−1

(
±(hu2;i+1,j:j−1U

n
i+1,j:j−1 − hu2;i,j:j−1Un

i,j:j−1)

+ V c;m
i,j:j−1(h

v
1;i,j+1:j−1 − hv1;ij)

)
+Ov

ij (5.365)

5.4 Drying/wetting and inundation schemes

5.4.1 Drying and wetting algorithm

The drying and flooding algorithm implemented in COHERENS closely fol-
lows the version used in the GETM model (Burchard & Bolding, 2002) and
consists of the following steps.

1. The advective, horizontal diffusion, Coriolis, curvature and baroclinic
pressure gradient terms in the 2-D and 3-D momentum equations are
multiplied by a “drying” factor α. For example, the u-equation becomes

1

h3

∂

∂t

(
h3u
)

+ α
[
Ah1(u) +Ah2(u) +Av(u)

+
v

h1h2

(
u
∂h1
∂ξ2
− v∂h2

∂ξ1

)
− 2Ωv sinφ

]
= − g

h1

∂ζ

∂ξ1
− 1

ρ0h1

∂Pa
∂ξ1

+ αF b
1 + F t

1 +Dmv(u)

+ α
(
Dmh1(τ11) +Dmh2(τ12)

)
(5.366)
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where α decreases from 1 when the total water depth is lower than a
critical value and becomes 0 when H reaches a minimum value

α = 1 if H > dcrit

α =
H − dmin
dcrit − dmin

if dmin ≤ H ≤ dcrit

α = 0 if H < dmin (5.367)

In this way the momentum equations reduce to a balance between
the time derivative, surface slope and vertical diffusion (bottom fric-
tion) terms when H → dmin. The formulation provides a continuous
transition from a wet to a dry condition in contrast to schemes, dis-
cussed below, using a “mask” function which sets cells to a dry or wet
state depending on some drying criterium. A second advantage is that
the scheme only involves two tunable parameters. Default values are
dcrit=0.1 m, dmin=0.02 m.

2. The total water depth at C-nodes is bounded below by the minimum
water depth to prevent negative water depths

Hc
ij = max(Hc

ij, dmin) (5.368)

so that a (spurious) small amount of water remains if a cell becomes
dry. Equation (5.368) implies a second condition for the surface level

ζij ≥ dmin − hij (5.369)

This means that if the value of ζij, obtained from the continuity equa-
tion, falls below the minimum value (5.369), a (small) amount of water
is added to the water column in violation of mass conservation. No
correction is applied in the current version of COHERENS, but the spu-
riously added water is stored in the program variable δeH which mea-
sures the error in water depth and is increased by the amount dmin−H
when H drops below dmin. By its definition δeH is non-negative and
cannot decrease in time.

3. In the absence of a drying mechanism the total water depth at the
velocity nodes is calculated as the (weigthed) average of the depths
at the surrounding C-nodes. Experiments showed that this method
produces large horizontal gradients for the vertical grid spacings for
water depths close to the minimum value, and, hence, unrealistically
high vertical current magnitudes after substitution in the baroclinic
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continuity equation (4.102). To smoothen the solution the depth at the
velocity is taken as the minimum of the surrounding C-node values, i.e.

Hu
ij = min(Hc

i−1,j, H
c
ij) if min(Hc

i−1,j, H
c
ij) < dcrit

Hv
ij = min(Hc

i,j−1, H
c
ij) if min(Hc

i,j−1, H
c
ij) < dcrit (5.370)

Disadvantage is an unphysical retardation of the flow through the ve-
locity interfaces.

4. To prevent an unrealistic outflow from a drying cell the surface slope
is calculated with a modified surface elevation at both sides

∂ζ

∂ξ1

∣∣∣
i

= max
(
ζi,min(dmin, Hi − hi−1)

)
− max

(
ζi−1,min(dmin, Hi−1 − hi)

)
∂ζ

∂ξ2

∣∣∣
j

= max
(
ζj,min(dmin, Hj − hj−1)

)
− max

(
ζj−1,min(dmin, Hj−1 − hj)

)
(5.371)

5. Equations (5.18)–(5.19) show that the bottom drag coefficient and
hence the bottom friction increases exponentially at small water depths.
This will slow down the water flow at water depths close to the mini-
mum value. Note that this effect is only present when the bottom drag
coefficient is calculated as function of a roughness length.

5.4.2 Inundation schemes

The drying/wetting scheme described in Section 5.4.1 has been extended in
Version 2.3 of COHERENS by the implementation of so-called “mask func-
tions”. The objective is to simulate inundation processes where coastal boun-
daries are moving dynamically or to simulate the flow over obstacles. There-
fore, grid cells of the computational domain will become “dry” or “wet”
depending on the value of the total water depth. In this way users have
the additional option to simulate inundation apart from the original dry-
ing/wetting scheme already present in COHERENS.

Inundation schemes are focused on simulating dynamic processes. “Dry-
ing and wetting” refers to an existent functionality used to define “wet” and
“dry” areas in the computational domain. COHERENS uses this functionality
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to define the coastal boundaries, this definition is performed at the initiali-
sation stage and only once. In this way a distinction is made of three type
of grid cells

• Land cells which are always dry and where no calculation is performed.
They are defined by the user as cells where the mean water depth has
a flagged value.

• Cells which are (temporarily) dry (non-active) but can be inundated
by the rising water. Calculations in these cells are disabled until they
are inundated from a neighbouring cell. The total water depth remains
limited from below by dmin so that at least a small amount of water
is present. In this way, dynamic coastal boundaries can be simulated.
Note that land topography is represented by negative bathymetric va-
lues (see below) so that there exists no lower limit for the mean water
depth except for values equal to the data flag.

• Active wet cells where all calculations are enabled.

The “mask functions” are defined as criteria for “masking” grid cells
according to their condition (dry or wet). When the criterium evaluates
as .TRUE. at a particular grid cell, the mask function will “mask in” the
cell. Hence, they will be considered for the solution of the hydrodynamic
equations. On the other hand, if grid cells become dry, the mask criterium
will “mask out” such grid cells and updates of quantitites defined at these
cells will be suspended. Dry cells are also excluded from the interpolation
of model variables on the model grid (see Section 10.2.2). The process is
repeated at the start of each predictor time step. Once a cell is set to a
“dry” status, the adjacent velocity nodes are blocked and the all currents at
these nodes are set to zero to prevent further drying of the grid cell. The
criteria are applied at the start of each predictor time step. If the criterium
at a dry cell evaluates as .FALSE. at a later time, the cell is reactivated again
and water is allowed to enter through the side faces.

Eleven mask functions are defined and can be used in combined form.
They can be divided in four groups. The first group compares the water
depths of a cell and its neighbours with a threshold value dth and is composed
of the following six criteria:

max(Hij, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (5.372)

min(Hij, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (5.373)

mean(Hij, Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (5.374)
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max(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (5.375)

min(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dth (5.376)

mean(Hi−1,j, Hi+1,j, Hi,j−1, Hi,j+1) < dtd (5.377)

where “mean” denotes an averaged value (excluding land cells which are
permanently dry).

A second group of criteria verifies the “status” of the neighbouring cells.
The status is defined by the function N which evaluates to 0 at dry and 1 at
sea cells7. The following criteria, used to prevent the formation of isolated
dry or wet cells, have been implemented:

max(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 (5.378)

min(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 (5.379)

The third group is a variant of the previous one and checks, in addition,
whether the total water depth of the grid cell is lower than the threshold
value:

max(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 and Hij < dth (5.380)

min(Ni−1,j,Ni+1,j,Ni,j−1,Ni,j+1) = 0 and Hij < dth (5.381)

The last scheme is intended for channel flows and overflowing dykes. The
criterium uses the total and mean water depths at the grid cell and its neigh-
bours

min(hi−1,j −Hi−1,j, hi+1,j −Hi+1,j) > hij (5.382)

or
min(hi,j−1 −Hi,j−1, hi,j+1 −Hi,j+1) > hij (5.383)

depending on whether the along-channel direction is along the X- or Y-axis.
The above criteria can be in applied in combination. This means that,

if several criteria have been activated by the user, the cell becomes dry if at
least one of them turns .TRUE. The cell becomes wet again if all of them
evaluate to .FALSE.

The following remarks are given for the user:

• The inundation algorithms can be used for tidal flats, i.e. areas below
mean sea level becomes dry/wet during low/high tide, as well as for
land areas above mean sea level. In the latter case, a topography of
the land, located above the mean sea level, has to be supplied. Land
topography is represented in the code by cells with a negative mean

7Represented by the model variable nodeatc (see Section 10.1.2.4).
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water depth, sea areas by positive mean water depths. A data flag,
given by the model parameter depmean flag, has to assigned to the
locations, considered as permanent land.

• In the 3-D case, the mask cannot be changed during a 3-D (baroclinic)
time step. This means that the mask criteria are tested after the last
corrector step and before the next predictor time step and not at each
barotropic time step. When a purely 2-D grid has been selected, the
criteria are obviously applied at each (barotropic) time step.

• In the current implementation, open boundaries cannot be blocked so
that they should be located where no drying process can take place.

• The threshold depth dth, used to determine whether a cell is dry or
wet, should be defined to a value sufficiently larger than the minimum
depth dmin, but at the same time lower than the critical depth dcrit.

5.5 Scalar transport equations

5.5.1 General aspects of discretisation

General features of the discretisation are

• With exception of turbulence variables (see Section 5.6) scalar quanti-
ties are located at C-nodes.

• Horizontal advection and diffusion terms are discretised explicitly in
time.

• In analogy with the momentum equations vertical advection is taken
semi-implicitly while vertical diffusion is treated fully implicitly. The
equations for vertical advection and diffusion are presented here in a
more general form covering both the explicit, implicit and semi-implicit
cases.

• As recommended by Ruddick (1995), the vertical spacing h3 is elimi-
nated from the time derivative (except in the absence of advection) by
adding corrector terms to the right hand side of the transport equation.

• Source terms are discretised explicitly. Contrary to the momentum
and turbulence transport equations the sink terms are evaluated ex-
plicitly. This has no impact on temperature and salinity, but has been
introduced for future implementation of biological concentrations where
conservation plays an important role.
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• When the momentum equations are solved using mode-splitting, the
advecting current (uf ,vf ) used for horizontal advection is composed
of the baroclinic current at the “predictor” step plus a filtered depth-
independent component obtained by averaging over the more rapidly
varying 2-D mode (see equations (5.26)–(5.27). Otherwise, uf = un+1,
vf = vn+1.

• The transport equation is integrated in time with or without the op-
erator splitting method depending on the type of advection scheme.
Note that the program allows to use of different advection schemes in
the momentum and scalar transport modules.

In analogy with momentum the time discretisation of a scalar transport
equation depends on the type of advection scheme selected in the program.
Several schemes are available. The type is selected with the model switch
iopt adv scal which, in analogy with the switch iopt adv 3d for momentum,
has the following meaning

0: horizontal and vertical advection disabled

1: upwind scheme for horizontal and vertical advection

2: Lax-Wendroff scheme for horizontal, central scheme for vertical advection8

3: TVD (Total Variation Diminishing) scheme using the superbee limiter
as a weighting function between the upwind scheme and either the Lax-
Wendroff scheme in the horizontal or the central scheme in the vertical

4: as the previous case now using the monotonic limiter.

5.5.2 Alternative formulation of the transport equa-
tion

The general form of a scalar transport equation is given by (4.76). Before
discussing its discretisation, the following modifications are made

1. The advective velocities u, v are replaced by the “filtered” currents
uf , vf given as the sum of the “filtered” depth-mean current and the
baroclinic part of the “predicted” current so that the numerical time-
integration guarantees the conservation of the scalar quantity (Deleer-
snijder, 1993).

8The “pure” Lax-Wendroff scheme has only been implemented for illustrative purposes
and should be avoided in realistic simulations.
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2. Making use of the continuity equation (4.60), the time derivative term
is written as

1

h3

∂

∂t
(h3ψ) =

∂ψ

∂t
+
ψ

h3

∂h3
∂t

=
∂ψ

∂t
− Cfs1(ψ)− Cfs2(ψ)− Cs3(ψ) (5.384)

where the “corrector” terms are defined by

Cfs1(ψ) =
ψ

h1h2h3

∂

∂ξ1
(h2h3uf ) (5.385)

Cfs2(ψ) =
ψ

h1h2h3

∂

∂ξ2
(h1h3vf ) (5.386)

Cs3(ψ) =
ψ

h3

∂ω

∂s
(5.387)

3. For reasons of conservation the source and sink are both discretised
explicitly. The operation is not without risk since the method may
produce negative concentrations (Burchard et al., 2003). To simplify
the notations the following operator is defined

T (ψ) = P(ψ)− S(ψ) (5.388)

An alternative method is the Patankar scheme, discussed in Section 5.6
below, which is monotone but does not guarantee conservation.

The new form of the scalar transport equation then becomes

∂ψ

∂t
+ Afh1(ψ) +Afh2(ψ) +Av(ψ)− Cfs1(ψ)− Cfs2(ψ)− Cs3(ψ)

= T (ψ) +Dsv(ψ) +Dsh1(ψ) +Dsh2(ψ) (5.389)

where Afhi are the horizontal advective operators using the filtered currents

Afh1(ψ) =
1

h1h2h3

∂

∂ξ1
(h2h3ufψ) (5.390)

Afh2(ψ) =
1

h1h2h3

∂

∂ξ2
(h1h3vfψ) (5.391)

(5.392)

5.5.3 Time discretisation

Three cases can be distinguished for the time integration. They are discussed
in the subsections below.
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5.5.3.1 integration without advection

In the absence of physical advection (iopt adv scal=0) the transport equation
is integrated in time using

hn+1
3 ψn+1 − hn3ψn

hn+1
3 ∆t

= θvDsv(ψn+1)+(1−θv)Dsv(ψn)+T (ψn)+Dsh1(ψn)+Dsh2(ψn)

(5.393)

5.5.3.2 integration with advection but without operator splitting

If iopt adv scal=1 or 2, the transport equation (5.389) is integrated in time
using

ψn+1 − ψn

∆t
= −Afh1(ψ

n) + Cfs1(ψn)−Afh2(ψ
n) + Cfs2(ψn)

− θaAv(ψn+1)− (1− θa)Av(ψn) + Cs3(ψn) + θvDsv(ψn+1)

+ (1− θv)Dsv(ψn) + T (ψn) +Dsh1(ψn) +Dsh2(ψn)

(5.394)

5.5.3.3 integration with operator splitting

If iopt adv scal=3, integration is performed along the following steps:

• Part A

ψ
n+1/3
A − ψn

∆t
= −Afh1(ψ

n) + Cfs1(ψn) +Dsh1(ψn) (5.395)

ψ
n+2/3
A − ψn+1/3

A

∆t
= −Afh2(ψ

n+1/3
A ) + Cfs2(ψn) +Dsh2(ψn+1/3

A ) (5.396)

ψn+1
A − ψn+2/3

A

∆t
= −θaAv(ψn+1

A )− (1− θa)Av(ψn+2/3
A ) + Cs3(ψn)

+ θvDsv(ψn+1
A ) + (1− θv)Dsv(ψn+2/3

A ) + T (ψn)

(5.397)

• Part B

ψ
n+1/3
B − ψn

∆t
= −θaAv(ψn+1/3

B )− (1− θa)Av(ψn) + Cs3(ψn)

+ θvDv(ψn+1/3
B ) + (1− θv)Dsv(ψn) + T (ψn)
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(5.398)

ψ
n+2/3
B − ψn+1/3

B

∆t
= −Afh2(ψ

n+1/3
B ) + Cfs2(ψn) +Dsh2(ψn+1/3

B ) (5.399)

ψn+1
B − ψn+2/3

B

∆t
= −Ah1(ψn+2/3

B ) + Cfs1(ψn) +Dsh1(ψn+2/3
B ) (5.400)

• Updated value

ψn+1 =
1

2
(ψn+1

A + ψn+1
B ) (5.401)

For the reasons discussed in Section 5.3.3.1 vertical advection is discre-
tised semi-implicitly and vertical diffusion implicitly. The default values,
taken for the implicity factors, are then given by θa = 0.501, θv = 1. The
use of the TVD scheme with the operator splitting method increases the
CPU time but has the capacity to preserve horizontal and vertical gradients
in frontal areas. The user therefore needs to make a balance between CPU
time and accuracy when selecting an appropriate scheme.

5.5.4 Discretisation of advection

The advective terms in the scalar transport equations are written as the
divergence of the fluxes F1, F2, F3 defined in Table 5.5:

Afh1(ψ) =
1

h1h2h3

∂

∂ξ1

(
h2h3ufψ

)
=

1

h1h2h3

∂

∂ξ1

(
h2h3F1

)
(5.402)

Afh2(ψ) =
1

h1h2h3

∂

∂ξ2

(
h1h3vfψ

)
=

1

h1h2h3

∂

∂ξ2

(
h1h3F2

)
(5.403)

Av(ψ) =
1

h3

∂

∂s
(ωψ) =

1

h3

∂F3

∂s
(5.404)

5.5.4.1 advection in the X-direction

The advective term in the X-direction is obtained by differencing the flux F u
1

at the C-node

Afh1(ψ)cijk =
hu2;i+1,jh

u
3;i+1,jkF

u
1;i+1,jk − hu2;ijhu3;ijkF u

1;ijk

hc1;ijh
c
2;ijh

c
3;ijk

(5.405)

The flux is calculated from

F u
1;ij =

(
1− Ω(ruijk)

)
F u
up;ijk + Ω(ruijk)F

u
lw;ijk (5.406)
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where F u
up;ijk and F u

lw;ijk are the upwind and Lax-Wendroff fluxes at the U-
node:

F u
up;ijk =

1

2
uf ;ijk

(
(αij + sijk)ψi−1,jk + (βij − sijk)ψijk

)
(5.407)

F u
lw;ijk =

1

2
uf ;ijk

(
(αij + cijk)ψi−1,jk + (βij − cijk)ψijk

)
(5.408)

where sijk and cijk are the sign and CFL number of the advecting current

sijk = Sign(uf ;ijk) , cijk =
uf ;ijk∆t

hu1;ij
(5.409)

αij =
hc1;ij
hu1;ij

, βij =
hc1;i−1,j
hu1;ij

(5.410)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv scal. The ar-
gument r of the weight function is defined by

ruijk =
(αij + sijk)∆F

u
i−1,jk + (βij − sijk)∆F u

i+1,jk

2∆F u
ijk

∆F u
ijk = F u

lw;ijk − F u
up;ijk (5.411)

5.5.4.2 advection in the Y-direction

The advective term in the Y-direction is obtained by differencing the flux F v
1

at the C-node

Afh2(ψ)cijk =
hv1;i,j+1h

v
3;i,j+1,kF

v
2;i,j+1,k − hv1;ijhv3;ijkF v

2;ijk

hc1;ijh
c
2;ijh

c
3;ijk

(5.412)

The flux is calculated from

F v
1;ij =

(
1− Ω(rvijk)

)
F v
up;ijk + Ω(rvijk)F

v
lw;ijk (5.413)

where F v
up;ijk and F v

lw;ijk are the upwind and Lax-Wendroff fluxes at the V-
node:

F v
up;ijk =

1

2
vf ;ijk

(
(αijk + sijk)ψi,j−1,k + (βijk − sijk)ψijk

)
(5.414)

F v
lw;ijk =

1

2
vf ;ijk

(
(αijk + cijk)ψi,j−1,k + (βijk − cijk)ψijk

)
(5.415)
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where sijk and cijk are the sign and CFL number of the advecting current

sijk = Sign(vf ;ijk) , cijk =
vf ;ijk∆t

hv2;ij
(5.416)

αij =
hc2;ij
hv2;ij

, βij =
hc2;i,j−1
hv2;ij

(5.417)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv scal. The ar-
gument r of the weight function is defined by

rvijk =
(αij + sijk)∆F

v
i,j−1,k + (βij − sijk)∆F v

i,j+1,k

2∆F v
ijk

∆F v
ijk = F v

lw;ijk − F v
up;ijk (5.418)

5.5.4.3 advection in the vertical direction

The vertical advective term is obtained by differencing the flux Fw
3 at the

C-node

Av(ψ)cijk =
Fw
3;ij,k+1 − Fw

3;ijk

hc3;ijk
(5.419)

The flux is calculated from

Fw
3;ijk =

(
1− Ω(rwijk)

)
Fw
up;ijk + Ω(rwijk)F

w
ce;ijk (5.420)

where Fw
up;ijk and Fw

ce;ijk are the upwind and central fluxes at the W-node:

Fw
up;ijk =

1

2
ωwijk

(
(αijk + sijk)ψij,k−1 + (βijk − sijk)ψijk

)
(5.421)

Fw
ce;ijk =

1

2
ωwijk

(
αijkψij,k−1 + βijkψijk

)
(5.422)

where

sijk = Sign(ωwijk) , αijk =
hc3;ijk
hw3;ijk

, βijk =
hc3;ij,k−1
hw3;ijk

(5.423)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv scal. The ar-
gument r of the weight function is defined by

rwijk =
(αijk + sijk)∆F

w
ij,k−1 + (βijk − sijk)∆Fw

ij,k+1

2∆Fw
ijk

∆Fw
ijk = Fw

ce;ijk − Fw
up;ijk (5.424)
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5.5.4.4 corrector terms

The corrector terms, defined by (5.385)–(5.387), are discretised using

Cfs1(ψ)c = ψijk
hu2;i+1,jh

u
3;i+1,jkuf ;i+1,jk − hu2;ijhu3;ijkuf ;ijk

hc1;ijh
c
2;ijh

c
3;ijk

(5.425)

Cfs2(ψ)c = ψijk
hv1;i,j+1h

v
3;i,j+1,kvf ;i,j+1,k − hv1;ijhv3;ijkvf ;ijk

hc1;ijh
c
2;ijkh

c
3;ijk

(5.426)

Cs3(ψ)c = ψijk
ωij,k+1 − ωijk

hc3;ijk
(5.427)

5.5.5 Discretisation of diffusion

The diffusive terms in the scalar transport equations are written as the di-
vergence of the fluxes D1, D2, D3 defined in Table 5.5:

Dsh1(ψ) =
1

h1h2h3

∂

∂ξ1

(
λH

h2h3
h1

∂ψ

∂ξ1

)
=

1

h1h2h3

∂

∂ξ1

(
h2h3D1

)
(5.428)

Dsh2(ψ) =
1

h1h2h3

∂

∂ξ2

(
λH

h1h3
h2

∂ψ

∂ξ2

)
=

1

h1h2h3

∂

∂ξ2

(
h1h3D2

)
(5.429)

Dsv(ψ) =
1

h3

∂

∂s

(λψT
h3

∂ψ

∂s

)
=

1

h3

∂D3

∂s
(5.430)

5.5.5.1 diffusion in the X-direction

The diffusion term in the X-direction is obtained by differencing the flux Du
1

at the C-node

Dsh1(ψ)cijk =
hu2;i+1,jh

u
3;i+1,jkD

u
1;i+1,jk − hu2;ijhu3;ijkDu

1;ijk

hc1;ijh
c
2;ijh

c
3;ijk

(5.431)

The flux is given by

Du
1;ijk =

λuH(ψijk − ψi−1,jk)
hu1;ij

(5.432)

5.5.5.2 diffusion in the Y-direction

The diffusion term in the Y-direction is obtained by differencing the flux Dv
2

at the C-node

Dsh2(ψ)cijk =
hv1;i,j+1h

v
3;i,j+1,kD

v
2;i,j+1,k − hv1;ijhv3;ijkDv

2;ijk

hc1;ijh
c
2;ijh

c
3;ijk

(5.433)
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The flux is given by

Dv
2;ijk =

λvH(ψijk − ψi,j−1,k)
hv2;ij

(5.434)

5.5.5.3 diffusion in the vertical direction

The vertical diffusion term is obtained by differencing the flux Dw
3 at the

C-node

Dsv(ψijk)c =
Dw

3;ij,k+1 −Dw
3;ijk

hc3;ijk
(5.435)

The flux is given by

Dw
3;ijk =

λψ;wT (ψijk − ψij,k−1)
hw3;ijk

(5.436)

5.5.6 Diffusion coefficients for scalars

5.5.6.1 horizontal diffusion coefficients

The discretised values of the horizontal diffusion coefficient at the U- and
V-nodes are obtained by applying (4.81) and interpolating Dc

T ;ijk and Duv
S;ijk,

given by (5.213)–(5.214), to the U- and V-nodes

λuH;ijk = Csh
u
1;ijh

u
2;ij

√(
Du
T ;ijk

)2
+
(
Du
S;ijk

)2
(5.437)

λvH;ijk = Csh
v
1;ijh

v
2;ij

√(
Dv
T ;ijk

)2
+
(
Dv
S;ijk

)2
(5.438)

5.5.6.2 vertical diffusion coefficient

The vertical diffusion coefficient for scalars λT is obtained from one of the
available turbulence schemes, described in Section 4.4. Values are first stored
at the W-nodes and interpolated afterwards at the U- and V-nodes for the
calculation of the vertical diffusion fluxes in the momentum equations. The
evaluation of λT only involves algebraic expressions so that the discretisation
procedure is straightforward.

For further comments see Section 5.3.12.2.

5.5.7 Boundary conditions

5.5.7.1 surface boundary conditions

The program allows four type of boundary conditions
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1. Neumann condition with a prescribed (downward) surface flux Fψ;w
s;ij

Dw
3;ijNz = Fψ;w

s;ij (5.439)

2. Neumann condition using a surface transfer velocity

Dw
3;ijNz = Cψ

s;ij

(
ψws;ij − (1− θv)ψijNz − θvψn+1

ijNz

)
(5.440)

where Cψ
s;ij is the transfer velocity and ψws;ij a prescribed external value.

3. Dirichlet condition with a prescribed external value ψcs;ij at the first
C-node below the surface

ψn+1
ijNz

= ψcs;ij (5.441)

4. Dirichlet condition with a prescribed external value ψws;ij at the surface
itself. In that case the value at the first node below the surface is
determined by interpolation

ψn+1
ijNz

=
2hw3;ijNzψ

w
s;ij + hc3;ijNzψ

n+1
ij,nz−1

2hw3;ijNz + hc3;ij,Nz
(5.442)

which can be more conveniently rewritten in “tridiagonal” form

−
hc3;ijNz

2hw3;ijNz + hc3;ijNz
ψn+1
ij,Nz−1 + ψn+1

ijNz
=

2hw3;ijNz
2hw3;ijNz + hc3;ijNz

ψws;ij (5.443)

Note that the second Neumann condition is semi-implicit whereas both Dirich-
let conditions use a fully implicit formulation.

5.5.7.2 bottom boundary conditions

The bottom boundary conditions are similar to the ones at the surface.

1. Neumann condition with a prescribed (upward) bottom flux Fψ;w
b;ij

Dw
3;ij1 = Fψ;w

b;ij (5.444)

2. Neumann condition using a bottom transfer velocity

Dw
3;ij1 = Cψ

b;ij

(
(1− θv)ψij1 + θvψ

n+1
ij1 − ψwb;ij

)
(5.445)

where Cψ
b;ij is the transfer velocity and ψwb;ij a prescribed external value.
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3. Dirichlet condition with a prescribed external value ψcb;ij at the first
C-node above the bottom

ψn+1
ij1 = ψcb;ij (5.446)

4. Dirichlet condition with a prescribed external value ψwb;ij at the bottom
itself. In that case the value at the first node above the sea bed is
determined by interpolation

ψn+1
ij1 =

2hw3;ij2ψ
w
b;ij + hc3;ij1ψ

n+1
ij2

2hw3;ij2 + hc3;ij1
(5.447)

which can be more conveniently rewritten in “tridiagonal” form

ψn+1
ij1 −

hc3;ij1
2hw3;ij2 + hc3;ij1

ψn+1
ij2 =

2hw3;ij2
2hw3;ij2 + hc3;ij1

ψwb;ij (5.448)

Note that the second Neumann condition is semi-implicit whereas both Dirich-
let conditions use a fully implicit formulation.

5.5.7.3 lateral boundary conditions

At the open boundaries the flux normal to the boundary is determined by
the upwind scheme. This means that

F u
1;ijk =

1

2
uf ;ijk

(
(1± sijk)ψeijk + (1∓ sijk)ψi:i−1,jk

)
(5.449)

at U-boundaries and

F v
2;ijk =

1

2
vf ;ijk

(
(1± sijk)ψeijk + (1∓ sijk)ψi,j:j−1,k

)
(5.450)

at V-boundaries, where the upper (lower) sign applies at western/southern
(eastern/northern) boundaries, the flow sign sijk is defined by (5.409) or
(5.416) and ψeijk denotes an external profile of ψ at one-half grid distance
outside the open boundary. The open boundary problem then consists in
determining the external profile ψe. The following four methods are available

1. Zero gradient condition.

ψeijk = ψi:i−1,jk or F u
1;ijk = uf ;ijkψi:i−1,jk (5.451)

ψeijk = ψi,j:j−1,k or F v
2;ijk = vf ;ijkψi,j:j−1,k (5.452)
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2. The external profile is prescribed.

3. Radiation condition using the baroclinic wave speed.

ψe;u;n+1
ijk = (1− wuijk)ψ

e;u;n
ijk + wuijkψ

n
i:i−1,jk (5.453)

ψe;v;n+1
ijk = (1− wvijk)ψ

e;v;n
ijk + wvijkψ

n
i,j:j−1,k (5.454)

The weight factors are given by

wuijk = ±R∆t

hu1;ij

√
guijH

n+1;c
i:i−1,j

wvijk = ±R∆t

hv2;ij

√
gvijH

n+1;c
i,j:j−1 (5.455)

where R is the prescribed ratio of the baroclinic to surface gravity wave
speed. Default value is 0.03.

4. Orlanski condition (see equation (4.383)).

ψe;u;n+1
ijk =

(
1−OR(ru1;ijk, r

u
2;ijk, r

u
3;ijk)

)
ψe;u;nijk

+OR(ru1;ijk, r
u
2;ijk, r

u
3;ijk)ψ

n
i:i−1,jk (5.456)

ψe;v;n+1
ijk =

(
1−OR(rv1;ijk, r

v
2;ijk, r

v
3;ijk)

)
ψe;v;nijk

+OR(rv1;ijk, r
v
2;ijk, r

v
3;ijk)ψ

n
i,j:j−1,k (5.457)

where the Orlanski function OR is defined by (5.269) and

ru1;ijk = ψni:i−1,jk , ru2;ijk = ψn−1i:i−1,jk , ru3;ijk = ψn−1i+1:i−2,jk (5.458)

rv1;ijk = ψni,j:j−1,k , rv2;ijk = ψn−1i,j:j−1,k , rv3;ijk = ψn−1i,j+1:j−2,k (5.459)

Advective fluxes normal to a closed (coastal) open boundary are set to
zero.

5.5.8 Solution of the discretised equations for scalars

As for momentum, the discretised equations can be written in tridiagonal
form, as given by (5.315). Expressions for the matrix components are given
below for the case that no operator splitting is used. They are easily extended
to the case with operator splitting.

When a Dirichlet boundary condition is used at the surface (bottom), the
surface (bottom) value of ψ is determined by the boundary condition itself.
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This means that k below varies between kmin and kmax where kmin equals 1
for a Neumann (flux) condition and 2 for a Dirichlet condition at the bottom.
Likewise, kmax equals Nz for a Neumann and Nz−1 for a Dirichlet condition
at the surface.

For simplicity, the i and j indices are omitted.

1. Time derivative.

The contribution of the time derivative is given by

Atk = 0 , Bt
k = 1 , Ct

k = 0 , Dt
k = ψnk (5.460)

where kmin ≤ k ≤ kmax.

2. Vertical advection.

The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

A
a−
k = −θac−k (αk + fk)

B
a−
k = −θac−k (βk − fk)

C
a−
k = 0

D
a−
k = (1− θa)c−k

(
(αk + fk)ψ

n
k−1 + (βk − fk)ψnk

)
(5.461)

where 2 ≤ k ≤ kmax,

c−k =
∆tωwk
2hc3;k

, fk =
(

1− Ω(rwk )
)
sk (5.462)

and αijk, βijk, sijk, r
w
ijk are defined by (5.423) and (5.424).

The terms arising from the flux above the k-level, are

A
a+
k = 0

B
a+
k = θac

+
k (αk+1 + fk+1)

C
a+
k = θac

+
k (βk+1 − fk+1)

D
a+
k = −(1− θa)c+k

(
(αk+1 + fk+1)ψ

n
k + (βk+1 − fk+1)ψ

n
k+1

)
(5.463)

where kmin ≤ k ≤ Nz − 1 and

c+k =
∆tωwk+1

2hc3;k
(5.464)
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3. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

A
d−
k = −θv

∆tλψ;wT ;k
hc3;kh

w
3;k

B
d−
k = θv

∆tλψ;wT ;k
hc3;kh

w
3;k

C
d−
k = 0

D
d−
k = −(1− θv)

∆tλψ;wT ;k
hc3;kh

w
3;k

(ψnk − ψnk−1) (5.465)

where 2 ≤ k ≤ kmax.

The terms taken from the flux above the k-level, are

A
d+
k = 0

B
d+
k = θv

∆tλψ;wT ;k+1

hc3;kh
w
3;k+1

C
d+
k = −θv

∆tλψ;wT ;k+1

hc3;kh
w
3;k+1

D
d+
k = (1− θv)

∆tλψ;wT ;k+1

hc3;kh
w
3;k+1

(ψnk+1 − ψnk ) (5.466)

where kmin ≤ k ≤ Nz − 1.

4. Other explicit terms.

All other terms are explicit. Their contributions can be written as

Aek = Be
k = Ce

k = 0

De
k = ∆t

(
T nk − Ã

f
h1(ψ)nk − Ã

f
h2(ψ)nk + Cfs1(ψ)nk

+ Cfs2(ψ)nk + Cs3(ψ)nk +Dsh1(ψ)nk +Dsh2(ψ)nk

)
(5.467)

where kmin ≤ k ≤ kmax.

5. Surface boundary conditions.

Contributions from the surface boundary conditions depends on the
type of condition as described in Section 5.5.7.1.
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• Neumann condition with a prescribed surface flux Fψ;w
s .

AsNz = Bs
Nz = Cs

Nz = 0 , Ds
Nz =

∆tFψ;w
s

hc3;Nz
(5.468)

• Neumann condition using a surface transfer velocity.

AsNz = Cs
Nz = 0 , Bs

Nz = θv
∆tCψ

s

hc3;Nz
, Ds

Nz =
∆tCψ

s

hc3;Nz

(
ψws −(1−θv)ψnNz

)
(5.469)

• Dirichlet condition with a prescribed external value ψcs at the first
node below the surface.

AsNz = Cs
Nz = 0 , Bs

Nz = 1 , Ds
Nz = ψcs (5.470)

• Dirichlet condition with a prescribed external value ψws at the
surface itself.

AsNz = −
hc3;Nz

2hw3;Nz + hc3;Nz
Bs
Nz = 1 , Cs

Nz = 0

Ds
Nz =

2hw3;Nzψ
w
s

2hw3;Nz + hc3;Nz
(5.471)

6. Bottom boundary conditions.

Contributions from the bottom boundary conditions depends on the
type of condition as described in Section 5.5.7.2.

• Neumann condition with a prescribed bottom flux Fψ;w
b .

Ab1 = Bb
1 = Cb

1 = 0 , Db
1 =

∆tFψ;w
b

hc3;1
(5.472)

• Neumann condition using a bottom transfer velocity.

Ab1 = Cb
1 = 0 , Bb

1 = θv
∆tCψ

b

hc3;1
, Db

1 =
∆tCψ

b

hc3;1

(
ψwb − (1− θv)ψn1

)
(5.473)

• Dirichlet condition with a prescribed external value ψcb at the first
node above the sea bed.

Ab1 = Cb
1 = 0 , Bb

1 = 1 , Db
1 = ψcb (5.474)
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• Dirichlet condition with a prescribed external value ψwb at the
bottom itself.

Ab1 = 0 , Bb
1 = 1

Cb
1 = −

hc3;1
2hw3;2 + hc3;1

Db
1 =

2hw3;2ψ
w
b

2hw3;2 + hc3;1
(5.475)

5.6 Turbulence transport equations

This section deals with the numerical solution of the transport equations
(4.204) for turbulence energy k, (4.205) for the dissipation rate ε and (4.209)
for the turbulent energy times mixing length kl. The discretisation algo-
rithms are highly similar to the ones used for scalar quantities. Main differ-
ences are

• Turbulence variables are determined at W-nodes.

• Production terms are taken explicitly at the old time step tn, whereas
the sink terms are discretised in time using the “quasi-implicit” ap-
proach, proposed by Patankar (1980), or

P(ψ) = P(ψn) , S(ψ) = P(ψn)
ψn+1

ψn
(5.476)

• Since the turbulent equations are solved before the momentum equa-
tions, the horizontal advective terms are discretised using the non-
filtered current (u,v).

• The discretisation algorithms for advection and diffusion are the same
as for C-node scalar quantities, except that all quantities are displaced
in the vertical. This means that 3-D variables (fluxes, advective veloci-
ties, diffusion coefficients, . . . ), previously evaluated at (C,U,V,W,UW,
VW)-nodes are now taken at respectively (W,UW,VW,C,U,V)-nodes.

The turbulence transport equations are generally written as

∂ψ

∂t
+ Ah1(ψ) +Ah2(ψ) +Av(ψ)− Cs1(ψ)− Cs2(ψ)− Cs3(ψ)

= P(ψ)− S(ψ) +Dsv(ψ) +Dsh1(ψ) +Dsh2(ψ) (5.477)
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where the corrector and horizontal advective operators Csi and Ahi are given
by (5.385)–(5.387) and (5.390)–(5.391) with (uf ,vf ) replaced by (u,v).

Despite the similarities with the previous section, the discretisation me-
thods are described in detail below, to avoid any confusion.

5.6.1 Time discretisation

Three cases can be distinguished for the time integration. They are discussed
in the subsections below.

5.6.1.1 integration without advection

In the absence of physical advection (iopt adv scal=0) the transport equation
is integrated in time using

hn+1;w
3 ψn+1;w − hn;w3 ψn;w

hn+1;w
3 ∆t

= θvDsv(ψn+1;w) + (1− θv)Dsv(ψn;w) + P(ψn;w)

− S(ψn;w)
ψn+1;w

ψn;w
+Dsh1(ψn;w) +Dsh2(ψn;w)

(5.478)

5.6.1.2 integration with advection but without operator splitting

If iopt adv turb=1 or 2, the transport equation (5.477) is integrated in time
using

ψn+1;w − ψn;w

∆t
= −Ah1(ψn;w) + Cs1(ψn;w)−Ah2(ψn;w) + Cs2(ψn;w)

− θaAv(ψn+1;w)− (1− θa)Av(ψn;w) + Cs3(ψn;w)

+ θvDsv(ψn+1;w) + (1− θv)Dsv(ψn;w) + P(ψn;w)

− S(ψn;w)
ψn+1;w

ψn;w
+Dsh1(ψn;w) +Dsh2(ψn;w) (5.479)

5.6.1.3 integration with operator splitting

If iopt adv turb=3, integration is performed along the following steps:

• Part A

ψ
n+1/3;w
A − ψn;w

∆t
= −Ah1(ψn;w) + Cs1(ψn;w) +Dsh1(ψn;w) (5.480)
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ψ
n+2/3;w
A − ψn+1/3;w

A

∆t
= −Ah2(ψn+1/3;w

A ) + Cs2(ψn:w)

+Dsh2(ψn+1/3;w
A ) (5.481)

ψn+1;w
A − ψn+2/3;w

A

∆t
= −θaAv(ψn+1;w

A )− (1− θa)Av(ψn+2/3;w
A )

+ Cs3(ψn;w) + θvDsv(ψn+1;w
A )

+ (1− θv)Dsv(ψn+2/3;w
A ) + P(ψn;w)

− S(ψn+2/3;w)
ψn+1;w

ψn+2/3;w
(5.482)

• Part B

ψ
n+1/3;w
B − ψn;w

∆t
= −θaAv(ψn+1/3;w

B )− (1− θa)Av(ψn;w)

+ Cs3(ψn;w) + θvDsv(ψn+1/3;w
B )

+ (1− θv)Dsv(ψn;w) + P(ψn;w)

− S(ψn;w)
ψn+1/3;w

ψn;w
(5.483)

ψ
n+2/3;w
B − ψn+1/3;w

B

∆t
= −Ah2(ψn+1/3;w

B ) + Cs2(ψn;w) +Dsh2(ψn+1/3;w
B )

(5.484)

ψn+1;w
B − ψn+2/3;w

B

∆t
= −Ah1(ψn+2/3;w

B ) + Cs1(ψn;w) +Dsh1(ψn+2/3;w
B )

(5.485)

• Updated value

ψn+1;w =
1

2
(ψn+1;w

A + ψn+1;w
B ) (5.486)

As before, the implicity factors are given by θa = 0.501, θv = 1.

5.6.2 Discretisation of advection

5.6.2.1 advection in the X-direction

The advective term in the X-direction is obtained by differencing the flux
F uw
1 at the W-node

Ah1(ψ)wijk =
hu2;i+1,jh

uw
3;i+1,jkF

uw
1;i+1,jk − hu2;ijhuw3;ijkF uw

1;ijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.487)
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The flux is calculated from

F uw
1;ij =

(
1− Ω(ruwijk)

)
F uw
up;ijk + Ω(ruwijk)F

uw
lw;ijk (5.488)

where F uw
up;ijk and F uw

lw;ijk are the upwind and Lax-Wendroff fluxes at the UW-
node:

F uw
up;ijk =

1

2
uuwijk

(
(αij + sijk)ψ

w
i−1,jk + (βij − sijk)ψwijk

)
(5.489)

F uw
lw;ijk =

1

2
uuwijk

(
(αij + cijk)ψ

w
i−1,jk + (βij − cijk)ψwijk

)
(5.490)

where sijk and cijk are the sign and CFL number of the advecting current

sijk = Sign(uuwijk) , cijk =
uuwijk∆t

hu1;ij
(5.491)

αij =
hc1;ij
hu1;ij

, βij =
hc1;i−1,j
hu1;ij

(5.492)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv turb. The
argument r of the weight function is defined by

ruijk =
(αij + sijk)∆F

uw
i−1,jk + (βij − sijk)∆F uw

i+1,jk

2∆F uw
ijk

∆F uw
ijk = F uw

lw;ijk − F uw
up;ijk (5.493)

5.6.2.2 advection in the Y-direction

The advective term in the Y-direction is obtained by differencing the flux
F vw
1 at the W-node

Ah2(ψ)wijk =
hv1;i,j+1h

vw
3;i,j+1,kF

vw
2;i,j+1,k − hv1;ijhvw3;ijkF vw

2;ijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.494)

The flux is calculated from

F vw
1;ij =

(
1− Ω(rvwijk)

)
F vw
up;ijk + Ω(rvwijk)F

vw
lw;ijk (5.495)

where F vw
up;ijk and F vw

lw;ijk are the upwind and Lax-Wendroff fluxes at the VW-
node:

F vw
up;ijk =

1

2
vvwijk

(
(αij + sijk)ψ

w
i,j−1,k + (βij − sijk)ψwijk

)
(5.496)
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F vw
lw;ijk =

1

2
vvwijk

(
(αij + cijk)ψ

w
i,j−1,k + (βij − cijk)ψwijk)

)
(5.497)

where sijk and cijk are the sign and CFL number of the advecting current

sijk = Sign(vvwijk) , cijk =
vvwijk∆t

hv2;ij
(5.498)

αij =
hc2;ij
hv2;ij

, βij =
hc2;i,j−1
hv2;ij

(5.499)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv turb. The
argument r of the weight function is defined by

rvwijk =
(αij + sijk)∆F

vw
i,j−1,k + (βij − sijk)∆F vw

i,j+1,k

2∆F vw
ijk

∆F vw
ijk = F vw

lw;ijk − F vw
up;ijk (5.500)

5.6.2.3 advection in the vertical direction

The vertical advective term is obtained by differencing the flux F c
3 at the

W-node

Av(ψ)wijk =
F c
3;ijk − F c

3;ij,k−1

hw3;ijk
(5.501)

The flux is calculated from

F c
3;ijk =

(
1− Ω(rcijk)

)
F c
up;ijk + Ω(rcijk)F

c
ce;ijk (5.502)

where F c
up;ijk and F c

ce;ijk are the upwind and central fluxes at the C-node:

F c
up;ijk =

1

2
ωcijk

(
(1 + sijk)ψ

w
ijk + (1− sijk)ψwij,k+1

)
(5.503)

F c
ce;ijk =

1

2
ωcijk(ψ

w
ij,k + ψwij,k+1) (5.504)

where
sijk = Sign(ωcijk) (5.505)

The form of the weighting function is given by (5.50)–(5.53), depending on
the type of advection scheme, selected by the switch iopt adv scal. The ar-
gument r of the weight function is defined by

rwijk =
(1 + sijk)∆F

c
ij,k−1 + (1− sijk)∆F c

ij,k+1

2∆F c
ijk

∆F c
ijk = F c

ce;ijk − F c
up;ijk (5.506)
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5.6.2.4 corrector terms

The corrector terms are discretised using

Cs1(ψ)w = ψwijk
hu2;i+1,jh

uw
3;i+1,jku

uw
i+1,jk − hu2;ijhuw3;ijkuuwijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.507)

Cs2(ψ)w = ψwijk
hv1;i,j+1h

vw
3;i,j+1,kv

vw
i,j+1,k − hv1;ijhvw3;ijkvvwijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.508)

Cs3(ψ)w = ψwijk
ωcij,k+1 − ωcijk

hw3;ijk
(5.509)

5.6.3 Discretisation of diffusion

5.6.3.1 diffusion in the X-direction

The diffusion term in the X-direction is obtained by differencing the flux Duw
1

at the W-node

Dsh1(ψ)wijk =
hu2;i+1,jh

uw
3;i+1,jkD

uw
1;i+1,jk − hu2;ijhuw3;ijkDuw

1;ijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.510)

The flux is given by

Duw
1;ijk =

λuwH (ψwijk − ψwi−1,jk)
hu1;ij

(5.511)

5.6.3.2 diffusion in the Y-direction

The diffusion term in the Y-direction is obtained by differencing the flux Dw
2

at the W-node

Dsh2(ψ)wijk =
hv1;i,j+1h

vw
3;i,j+1,kD

vw
2;i,j+1,k − hv1;ijhvw3;ijkDvw

2;ijk

hc1;ijh
c
2;ijh

w
3;ijk

(5.512)

The flux is given by

Dvw
2;ijk =

λvwH (ψwijk − ψwi,j−1,k)
hv2;ij

(5.513)

5.6.3.3 diffusion in the vertical direction

The vertical diffusion term is obtained by differencing the flux Dc
3 at the

W-node

Dsv(ψijk)w =
Dc

3;ijk −Dc
3;ij,k−1

hw3;ijk
(5.514)
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The flux is given by

Dc
3;ijk =

λψ;cT (ψwij,k+1 − ψwijk)
hc3;ijk

(5.515)

5.6.4 Diffusion coefficients for turbulence variables

5.6.4.1 horizontal diffusion coefficients

The horizontal turbulent diffusion coefficients are the same as the one used
for scalar transport. They are obtained by vertical interpolation of λuH and
λvH , given by (5.437–(5.438) to respectively the UW and VW-nodes.

5.6.4.2 vertical diffusion coefficients

The vertical turbulent diffusion coefficients, used in the ε-equation (4.205)
and kl-equation (4.209), are proportional to νk which is the one used in
the k-equation (4.204). Different formulations for the parameterisation of
νk are available and discussed in Section 4.4.3.3. No specific discretisation
procedures are required since all expressions are purely algebraic.

The following remarks are to be given

• Values are first obtained at the W-nodes and then interpolated at the
C-nodes.

• No value is calculated at the surface and the bottom.

• Since νk is calculated prior to the solution of the turbulent transport
equations, its value is obtained using values of k, ε and l at the old
time tn.

5.6.5 Production and sink terms

All turbulence transport equations contain, besides the diffusion terms, three
terms on their right hand side. The first is the shear production term, the
second is the buoyancy term which is a production or sink term if N2 < 0 or
N2 > 0 and the third is a dissipation (sink) term. Defining

N2 = max(N2, 0) + min(N2, 0) = N2
+ −N2

− (5.516)

one has

P(k) = νTM
2 + λTN

2
−
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P(ε) = c1ε
ε

k

(
νTM

2 + c3ελTN
2
−

)
P(kl) =

1

2
l
(
E1νTM

2 + E3λTN
2
−

)
(5.517)

and

S(k) = λTN
2
+ + ε

S(ε) = c1εc3ελTN
2
+ + c2ε

ε2

k

S(kl) =
1

2

(
lE3λTN

2
+ + ε0k

3/2W̃
)

(5.518)

The discretisation of M2, N2
±, νT and λT is discussed in Section 5.3.12.2.

Production terms are taken explicit in time using values of all quantities at
time tn. Sink terms are discretised quasi-implictly using (5.476):

S(k) = (λTN
2
+ + εn)

kn+1

kn

S(ε) = c1εc3ελTN
2
+

εn+1

εn
+ c2ε

εnεn+1

kn

S(kl) =
1

2

(
E3

λTN
2
+

kn
+ ε0

(kl)n+1
√
knW̃

ln

)
(5.519)

5.6.6 Boundary conditions

5.6.6.1 surface boundary conditions

In analogy with the scalar case two Neumann and two Dirichlet type of
surface boundary conditions are available in the program.

1. Neumann condition with a prescribed flux Fψ;w
s;Nz+1 at the surface

Dw
3;ij,Nz+1 = Fψ;w

s;ij,Nz+1 (5.520)

The flux at the first C-node below the surface is then determined by
interpolating the surface value and the calculated flux at the second
C-node below the surface

Dc
3;ijNz =

2hw3;ijNzF
ψ;w
s;ij,Nz+1 + hc3;ijNzD

c
3;ij,Nz−1

2hw3;ijNz + hc3;ijNz

=
2hw3;ijNzF

ψ;w
s;ij,Nz+1

2hw3;ijNz + hc3;ijNz
+
hc3;ijNzλ

ψ;c
T ;ij,Nz−1(ψ

w
ijNz
− ψwij,Nz−1)

hc3;ij,Nz−1(2h
w
3;ijNz

+ hc3;ijNz)
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Table 5.6: Discretisation schemes for each of the available surface and bottom
boundary conditions for turbulent variables.

variable equation discretisation scheme

k (4.281) Dirichlet at the surface
ε (4.281) Dirichlet at the first W-node below the surface
l (4.281) Dirichlet at the first W-node below the surface
k (4.283) prescribed flux at the surface
ε (4.284) prescribed flux at the first C-node below the surface
k (4.351) Dirichlet at the bottom
ε (4.351) Dirichlet at the first W-node above the sea bed
l (4.351) Dirichlet at the first W-node above the sea bed
k (4.352) prescribed flux at the bottom
ε (4.353) prescribed flux at the first C-node above the sea bed

(5.521)

with

ψwijNz − ψ
w
ij,Nz−1 = θv(ψ

n+1;w
ijNz

− ψn+1;w
ij,Nz−1) + (1− θv)(ψn;wijNz − ψ

n;w
ij,Nz−1)

(5.522)

2. Neumann using a prescribed flux Fψ;c
s;ijNz

at the first C-node below the
surface

Dc
3;ijNz = Fψ;c

s;ijNz
(5.523)

3. Dirichlet condition with a prescribed value ψws;ij,Nz+1 at the surface

ψij,Nz+1 = ψws;ij,Nz+1 (5.524)

4. Dirichlet condition with a prescribed value ψws;ijNz at the first W-node
below the surface

ψijNz = ψws;ijNz (5.525)

Several formulations of surface boundary conditions have been introduced
in Section 4.7.5. The discretisation scheme for each formulation is indicated
in Table 5.6.

It is remarked that all turbulent diffusion coefficients are calculated using
those values of k, ε and l which are located within the water column and not
at the surface itself so that (5.523) and (5.525) can be considered as realistic
conditions.
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5.6.6.2 bottom boundary conditions

In analogy with the scalar case two Neumann and two Dirichlet type of
bottom boundary conditions are available in the program.

1. Neumann condition with a prescribed flux Fψ;w
b;ij1 at the bottom

Dw
3;ij1 = Fψ;w

b;ij1 (5.526)

The flux at the first C-node above the sea bed is then determined by
interpolating the bottom value and the calculated flux at the second
C-node above the sea bed

Dc
3;ij1 =

2hw3;ij2F
ψ;w
b;ij + hc3;ij1D

c
3;ij2

2hw3;ij2 + hc3;ij1

=
2hw3;ij2F

ψ;w
b;ij

2hw3;ij2 + hc3;ij1
+
hc3;ij1λ

ψ;c
T ;ij2(ψ

w
ij3 − ψwij2)

hc3;ij2(2h
w
3;ij2 + hc3;ij1)

(5.527)

with

ψwij3 − ψwij2 = θv(ψ
n+1;w
ij3 − ψn+1;w

ij2 ) + (1− θv)(ψn;wij3 − ψ
n;w
ij2 ) (5.528)

2. Neumann using a prescribed flux Fψ;c
b;ij1 at the first C-node above the

bottom

Dc
3;ij1 = Fψ;c

b;ij1 (5.529)

3. Dirichlet condition with a prescribed value ψwb;ij1 at the bottom

ψij1 = ψwb;ij1 (5.530)

4. Dirichlet condition with a prescribed value ψwb;ij2 at the first W-node
above the bottom

ψij2 = ψwb;ij2 (5.531)

Several formulations of bottom boundary conditions have been introduced
in Section 4.9.4. The discretisation scheme for each formulation is indicated
in Table 5.6.
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5.6.6.3 lateral boundary conditions

The fluxes normal to an open boundary are calculated using the upwind
scheme. Applying the zero gradient condition one obtains

ψe;wijk = ψwi:i−1,jk or F uw
1;ijk = uuwijkψ

w
i:i−1,jk (5.532)

ψe;wijk = ψwi,j:j−1,k or F vw
2;ijk = vvwijkψ

w
i,j:j−1k (5.533)

Advective fluxes normal to a closed (coastal) open boundary are set to
zero.

5.6.7 Solution of the discretised equations for turbu-
lent transport variables

As for momentum, the discretised equations can be written in the tridiagonal
form (5.315). Expressions for the matrix components are given below for the
case that no operator splitting is used. They are easily extended to the case
with operator splitting.

When a Neumann boundary condition is taken, no calculation is per-
formed at the surface or bottom itself. In case of a Dirichlet condition, the
surface (bottom) value of ψ is determined by the boundary condition itself.
This means that the vertical index k varies between kmin and kmax. The
lower limit kmin equals 3 for a Dirichlet condition at the first W-node above
the bottom and 2 otherwise. Likewise kmax equals Nz − 1 for a Dirichlet
condition at the first W-node below the surface and Nz otherwise.

For simplicity, the i and j indices are omitted.

1. Time derivative.

The contribution of the time derivative is given by

Atk = 0 , Bt
k = 1 , Ct

k = 0 , Dt
k = ψn;wk (5.534)

where kmin ≤ k ≤ kmax.

2. Vertical advection.

The vertical advection term is split up into two contributions arising
from the fluxes below and above a k-level. The former are given by

A
a−
k = −θac−k (1 + fk−1)

B
a−
k = −θac−k (1− fk−1)

C
a−
k = 0
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D
a−
k = (1− θa)c−k

(
(1 + fk−1)ψ

n;w
k−1 + (1− fk−1)ψn;wk

)
(5.535)

where kmin ≤ k ≤ kmax,

c−k =
∆tωck−1
2hw3;k

, fk =
(

1− Ω(rck)
)
sk (5.536)

and sijk, r
w
ijk are defined by (5.505) and (5.506).

The terms arising from the flux above the k-level, are

A
a+
k = 0

B
a+
k = θac

+
k (1 + fk)

C
a+
k = θac

+
k (1− fk)

D
a+
k = −(1− θa)c+k

(
(1 + fk)ψ

n;w
k + (1− fk)ψn;wk+1

)
(5.537)

where kmin ≤ k ≤ kmax and

c+k =
∆tωck
2hw3;k

(5.538)

3. Vertical diffusion.

As for vertical advection the fluxes below and above a k-level are taken
separately. The former are given by

A
d−
k = −θv

∆tλψ;cT ;k−1
hc3;k−1h

w
3;k

B
d−
k = θv

∆tλψ;cT ;k−1
hc3;k−1h

w
3;k

C
d−
k = 0

D
d−
k = −(1− θv)

∆tλψ;cT ;k−1
hc3;k−1h

w
3;k

(ψn;wk − ψn;wk−1) (5.539)

where klo ≤ k ≤ kmax and klo equals 2 for a Dirichlet condition at the
bottom and 3 otherwise.

The terms taken from the flux above the k-level, are

A
d+
k = 0
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B
d+
k = θv

∆tλψ;cT ;k
hc3;kh

w
3;k

C
d+
k = −θv

∆tλψ;cT ;k
hc3;kh

w
3;k

D
d+
k = (1− θv)

∆tλψ;cT ;k
hc3;kh

w
3;k

(ψn;wk+1 − ψ
n;w
k ) (5.540)

where kmin ≤ k ≤ kup and kup equals Nz for a Dirichlet condition at
the surface and Nz-1 otherwise.

4. Sink terms.

ASk = CS
k = DS

k = 0 , BS
k =
S(ψn;w)k
ψn;wk

(5.541)

where kmin ≤ k ≤ kmax.

5. Other explicit terms.

All other terms are explicit. Their contributions can be written as

Aek = Be
k = Ce

k = 0

De
k = ∆t

(
Pnk − Ãh1(ψn;w)wk − Ãh2(ψn;w)wk + Cs1(ψn;w)wk

+ Cs2(ψn;w)wk + Cs3(ψn;w)wk +Dsh1(ψn;w)wk +Dsh2(ψn;w)wk

)
(5.542)

where kmin ≤ k ≤ kmax.

6. Surface boundary conditions.

Contributions from the surface boundary conditions depends on the
type of condition as described in Section 5.6.6.1.

• Neumann condition with a prescribed surface flux Fψ;w
s;Nz+1.

AsNz =
θv∆th

c
3;Nz

λψ;cT ;Nz−1
hw3;Nz(2h

w
3;Nz

+ hc3;Nz))h
c
3;Nz−1

Bs
Nz = −

θv∆th
c
3;Nz

λψ;cT ;Nz−1
hw3;Nz(2h

w
3;Nz

+ hc3;Nz))h
c
3;Nz−1

Cs
Nz = 0
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Ds
Nz =

∆t

2hw3;Nz + hc3;Nz

(
2Fψ;w

s;Nz+1

+ (1− θv)
hc3;Nzλ

ψ;c
T ;Nz−1(ψ

n;w
Nz
− ψn;wNz−1)

hw3;Nzh
c
3;Nz−1

)
(5.543)

• Neumann using a prescribed flux Fψ;c
s;Nz

at the first C-node below
the surface

AsNz = Bs
Nz = Cs

Nz = 0 , Ds
Nz =

∆tFψ;c
s;Nz

hw3;Nz
(5.544)

• Dirichlet condition with a prescribed value ψws;Nz+1 at the surface

AsNz+1 = Cs
Nz+1 = 0 , Bs

Nz+1 = 1 , Ds
Nz+1 = ψws;Nz+1 (5.545)

• Dirichlet condition with a prescribed value ψws;Nz at the first W-
node below the surface

AsNz = Cs
Nz = 0 , Bs

Nz = 1 , Ds
Nz = ψws;Nz (5.546)

7. Bottom boundary conditions.

Contributions from the bottom boundary conditions depends on the
type of condition as described in Section 5.6.6.2.

• Neumann condition with a prescribed bottom flux Fψ;w
b;1 at the

bottom

Ab2 = 0

Bb
2 = −

θv∆th
c
3;1λ

ψ;c
T ;2

hw3;2(2h
w
3;2 + hc3;1))h

c
3;2

Cb
2 =

θv∆th
c
3;1λ

ψ;c
T ;2

hw3;2(2h
w
3;2 + hc3;1))h

c
3;2

Db
2 = − ∆t

2hw3;2 + hc3;1

(
2Fψ;w

b;1 + (1− θv)
hc3;1λ

ψ;c
T ;2(ψ

n;w
3 − ψn;w2 )

hw3;2h
c
3;2

)
(5.547)

• Neumann using a prescribed flux Fψ;c
b;1 at the first C-node above

the bottom

Ab2 = Bb
2 = Cs

2 = 0 , Db
2 = −

∆tFψ;c
b;1

hw3;2
(5.548)
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• Dirichlet condition with a prescribed value ψwb;1 at the bottom

Ab1 = Cb
1 = 0 , Bb

1 = 1 , Db
1 = ψwb;1 (5.549)

• Dirichlet condition with a prescribed value ψwb;2 at the first W-node
above the bottom

Ab2 = Cb
2 = 0 , Bb

2 = 1 , Db
2 = ψwb;2 (5.550)

5.7 Discretisations on reduced grids

5.7.1 Discretised 1-D mode equations

1. To make the code compatible with the 3-D case which uses an Arakawa
C-grid, the model grid on which the equations are discretised, does not
not reduce to a single point but consists of 3 rows and columns (i.e.
nc=nr=3) of which the last column and the last row consist of dummy
land points (see Figure 5.1). This produces a computational overhead
since the same calculation is performed at each of the four wet C-nodes
and the two internal U and V velocity nodes.

2. Momentum equations

• The 1-D versions (4.109)–4.110) are integrated in time without
operator and mode splitting using the formulations given in Sec-
tions 5.3.1.1 and 5.3.1.3. Firstly, “predicted” values are calculated

ũp − un

∆t
= fvn + θvDmv(ũp) + (1− θv)Dmv(un)− g∂ζ

n+1

∂x
+F t;n+1

1

(5.551)
ṽp − vn

∆t
= −fun+θvDmv(ṽp)+(1−θv)Dmv(vn)−g∂ζ

n+1

∂y
+F t;n+1

2

(5.552)
An implicit correction is added for the Coriolis force giving (up,
vp) by equations (5.10). “Corrected” values are obtained by

un+1 =
hn3;k

hn+1
3;k

up , vn+1 =
hn3;k

hn+1
3;k

vp (5.553)

where the surface slopes and the elevations used to calculate the
vertical grid spacing hn+1

3;k = (h + ζn+1)∆σk are prescribed exter-
nally by expressions of the form (4.285).
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• The vertical diffusion terms and coefficients are discretised using
the formulations given in Sections 5.3.11 and 5.3.12.2.

• Once the currents are updated, the depth-mean currents u and v
are evaluated (for user output only).

3. Scalar equations

• The transport equation for a scalar ψ is integrated in time without
operator splitting using the discretisation (5.393).

• The vertical diffusion term and coefficient are discretised as des-
cribed in Sections 5.5.5.3 and 5.5.6.2.

• Neumann and Dirichlet onditions can be applied as discussed in
Sections 5.5.7.1–5.5.7.2.

4. The turbulence equations are solved as in the 3-D case without advec-
tion and operator splitting.

5.7.2 Discretised depth-integrated equations

1. Momentum equations

• The surface elevation and depth-integrated currents are updated
by solving the 2-D momentum equations using the same discretisa-
tion procedures given in Sections 5.3 without the depth-integrated
baroclinic terms but with the same barotropic time step ∆τ .

• To make the code compatible with the 3-D case all “3-D” currents
are set to their depth-mean value

uf = u = U/H = u

vf = v = V/H = v (5.554)

2. Scalar equations

• Scalar transport is discretised in exactly the same way as in the
3-D case with the larger 3-D time step ∆t.

• The vertical diffusion term is retained and discretised using (5.436)
except that the upper and lower fluxes are located at the respec-
tively the surface and the bottom and therefore obtained by the
surface and bottom boundary conditions which must obviously be
of the Neumann type.

3. No turbulence transport equations need to be solved.
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5.8 Solution procedure

The general solution procedure can be summarised as follows

1. Initial time t = 0.

1.1 Obtain initial conditions for U , V , ζ, u, v, ω, T , S, k, l or ε, and
quantities which are updated in time at open boundaries.

1.2 Initialise ρ, βT , βS from the equation of state.

1.3 Evaluate the astronomical force at the initial time.

1.4 Initialise meteorological data.

1.5 Initialise open boundary data for the 2-D mode, 3-D mode, tem-
perature, salinity.

1.6 Initialise surface and bottom stress.

2. Predictor step at t = tp = tn + ∆τ with n=0, . . . , Ntot − 1.

2.1 Update meteorological data (if needed).

2.2 Update ρ, βT , βS from the equation of state.

2.3 Update all vertical diffusion coefficients. In case of a RANS model,
k, l or ε are first updated at time tn+1.

2.4 Evaluate the components of the baroclinic pressure gradient.

2.5 Evaluate the horizontal diffusion coefficients at different nodes.

2.6 Obtain up, vp by solving the 3-D momentum equations.

3. Barotropic time steps t = tn +m∆τ with m=1, . . . , Mt.

3.1 Update meteorological data (if needed).

3.2 Solve 2-D continuity equation for ζ.

3.3 Update open boundary data for the 2-D mode (if needed).

3.4 Update astronomical force.

3.5 Update U , V by solving the 2-D momentum equations.

3.6 Update the time-averaged transports Uf , Vf .

4. Corrector step at t = tn+1 = tn + ∆t with n=1, . . . , Ntot.

4.1 3-D mode

4.1.1 Update open boundary data (if needed).
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4.1.2 Apply open boundary conditions.

4.1.3 Apply filter correction to obtain un+1, vn+1.

4.1.4 Evaluate filtered currents uf , vf .

4.1.5 Solve 3-D baroclinic continuity equation for ω.

4.1.6 Update physical vertical current.

4.1.7 Update bottom and surface stress (if needed).

4.2 Update temperature at time tn+1.

4.2.1 Update open boundary data (if needed).

4.2.2 Apply open boundary conditions.

4.2.3 Evaluate solar irradiance.

4.2.4 Evaluate surface (non-solar) heat fluxes.

4.2.5 Solve temperature equation.

4.3 Update salinity at time tn+1.

4.3.1 Update open boundary data (if needed).

4.3.2 Apply open boundary conditions.

4.3.3 Solve salinity equation.

Note that

• Some of the previous steps are only conditionally performed, depending
on the setting of model switches. For example, the temperature equa-
tion is only updated when iopt temp=2, the astronomical tidal force is
only included if iopt astro tide=1, . . . .

• Update of surface or open boundary forcing data depends on the set-
tings of the tlims attribute, discussed in Section 14.7.2 of the User
Manual.
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