
Chapter 4

Physical model

4.1 Model coordinates

4.1.1 Coordinate systems

The coordinate units, used within the program, are either Cartesian (x, y, z)
or spherical (λ, φ, z), with the z-axis directed upwards along the vertical. The
Cartesian coordinates are defined in a horizontal plane tangent at a location
on the Earth’s surface. In the spherical system λ and φ represent respec-
tively the longitude (positive in the eastern, negative in the western hemi-
sphere) and the latitude (positive in the northern, negative in the southern
hemisphere). The vertical coordinate is chosen such that the surface z = 0
corresponds to the mean sea water level. This gives

z = ζ(x, y, t) or z = ζ(λ, φ, t) at the free surface (4.1)

z = −h(x, y) or z = −h(λ, φ) at the bottom (4.2)

where ζ is the sea surface elevation and h the mean water depth so that the
total water depth H is given by H = h+ ζ.

Cartesian coordinates make it easier to set up a model grid in the hori-
zontal and can be used for size-limited areas where the Earth’s curvature is
negligible and the Coriolis frequency can be considered as uniform in space.
A further advantage is that the coordinate axes can be arbitrarily rotated in
the horizontal. Rotation of a spherical coordinate system is less straightfor-
warded and is considered by the program as a particular case of a curvilinear
grid (see below).

Coordinate units are meters in the Cartesian and decimal degrees in the
spherical case with −1800 ≤ λ ≤ 1800 and −900 ≤ φ ≤ 900.
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Implementation

Coordinate systems are selected in the model with the switch iopt grid sph:

0 : Cartesian

1 : spherical

4.1.2 Coordinate transforms in the horizontal

The program allows to define horizontal grids in a more flexible way through
the introduction of curvilinear coordinates. Consider firstly the following
general horizontal coordinate transform

ξ1 = f1(x, y) , ξ2 = f2(x, y) (4.3)

The inverse transform becomes

x = F1(ξ1, ξ2) , y = F2(ξ1, ξ2) (4.4)

The distance between two neighbouring (grid) points is given by

∆d2 = ∆x2 + ∆y2

=
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∂F1

∂ξ1

)2

+
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∂ξ1

)2
]

∆ξ21 +
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+
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∂ξ2
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∆ξ22

+ 2
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∂ξ2
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∂ξ1
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∂ξ2

)
∆ξ1∆ξ2 (4.5)

If
∂F1

∂ξ1

∂F1

∂ξ2
+
∂F2

∂ξ1

∂F2

∂ξ2
= 0 (4.6)

then

∆d2 = h21∆ξ
2
1 + h22∆ξ

2
2 (4.7)

and (ξ1, ξ2) are then called orthogonal curvilinear coordinates. This means
geometrically that the coordinate curve along which ξ1 is a constant, inter-
sects the curve along which ξ2 is constant orthogonally.

Note that spherical coordinates can be considered as “pseudo”-curvilinear
coordinates with respect to Cartesian coordinates with h1 = R cosφ and
h2 = R where R is the mean radius of the Earth, defined as the radius of a
sphere having the same volume as the Earth or 6371 km (see Appendix 2 of
Gill, 1982)
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uniform rectangular non−uniform rectangular

Figure 4.1: Example of a uniform (left) and non-uniform rectangular grid
(right).

In practice ∆ξ1,∆ξ2 are both normalised to 1, so that the metric coeffi-
cients h1, h2 now become the grid spacings along the curvilinear coordinate
lines.

The following types of coordinate transformations are considered in CO-
HERENS:

• “Fully” curvilinear: h1 = h1(ξ1, ξ2) and h2 = h2(ξ1, ξ2)

• Non-uniform rectangular: h1 = h1(ξ1) and h2 = h2(ξ2), i.e. ∂h1/∂ξ2 =
∂h2/∂ξ1 = 0

• Uniform rectangular: h1 and h2 are independent of ξ1 and ξ2.

A computational model grid in the horizontal is constructed at the “grid
nodes” which are located at the orthogonal intersections of a series of coor-
dinate lines along which ξ1 is constant with coordinate lines along which ξ2
is constant. The boxes bounded by four neighbouring grid nodes are called
model “grid cells”. Figures 4.1 and 4.2 show examples of a uniform and
non-uniform rectangular grid, repectively a curvilinear grid. Although not
recommended, COHERENS offers the possibility to define model grids with
“ragged” boundaries, obtained by removing grid cells from the physical do-
main where the actual calculations are performed. An example is given in
Figure 4.3.

A model grid is defined in practice by supplying the coordinates of all
grid nodes. In case of a fully curvilinear grid, these coordinates need to be
provided by the user. For a rectangular grid, they are given by

x1 = xr

xi = xr +
i−1∑
k=1

∆x(k) for i = 2, . . . , Nx+1
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Figure 4.2: Example of a curvilinear grid
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Figure 4.3: Example of a model grid with ragged boundaries

y1 = yr

yj = yr +

j−1∑
k=1

∆y(k) for j = 2, . . . , Ny+1 (4.8)

in Cartesian, or

λ1 = λr

λi = λr +
i−1∑
k=1

∆λ(k) for i = 2, . . . , Nx+1

φ1 = φr

φj = φr +

j−1∑
k=1

∆φ(k) for j = 2, . . . , Ny+1 (4.9)

in spherical coordinates, where Nx, Ny are the number of grid cells in the ξ1-,
respectively ξ2-direction, (xr, yr) or λr, φr the coordinates of a reference point,
(∆x,∆y) the grid spacings along the X- and Y-direction in the Cartesian
and (∆λ,∆φ) the grid spacings along longitude and latitude circles in the
spherical case.
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Implementation

The type of horizontal grid is selected with the switch iopt grid htype:

1: uniform rectangular

2: non-uniform rectangular

3: fully curvilinear

4.1.3 Rotated grids

To avoid that the coordinate lines of a spherical rectangular grid are re-
strained to latitude and longitude circles, COHERENS allows to apply a grid
rotation. This is affected by deplacing the North pole for the geographic coor-
dinates to a new position. In this way the grid can be made more aligned
with coastal or more efficient open boundaries. An example of a rotated grid
is shown in Figure 4.4

If (λp, φp) are the longitude and latitude of the displaced North Pole, the
transformation formulae to the new coordinates (λ′, φ′) become

φ′ = arcsin
[
sinφp sinφ+ cosφp cosφ cos(λ− λp)

]
(4.10)

λ′ = S
(
sin(λp − λ)

)
arccos

[cosφp sinφ− sinφp cosφ cos(λ− λp)
cosφ′

]
(4.11)

where S(x) is the Sign function1. The backward transformation formulae are

φ = arcsin
[
sinφp sinφ′ + cosφp cosφ′ cosλ′

]
(4.12)

λ = S(sinλ′) arccos
[sinφp cosφ′ cosλ′ − cosφp sinφ′

cosφ

]
+ λp − S(λp)π

(4.13)

The coordinates of the grid nodes in the new coordinate grid are deter-
mined by (4.9) with (λ, φ,∆λ,∆φ) replaced by (λ′, φ′,∆λ′,∆φ′). The loca-
tion of the new North pole is obtained by defining two additional parameters

• The first is the grid rotation angle α defined as the angle between the
geographical and new equator. It is easily seen that α = 900−φp. Note
that 0 < α < 1800.

1S(x) equals 1 if x ≥ 0, and 0 otherwise.
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Figure 4.4: Example of a rotated grid

• The second parameter is the reference latitude φ′r from which the lon-
gitude of the new North pole can be determined using (4.10):

λp = λr − S(cosα)
∣∣∣arccos

(sinφ′r − cosα sinφr
sinα cosφr

)∣∣∣ (4.14)

The reason for taking φ′r as a user-defined parameter is to allow more
flexibility for selecting the grid spacing. A uniform rectangular grid
with h1 ' h2 can be generated by letting ∆λ′ = ∆φ′ and φ′r = 0.

A rotated grid in Cartesain coordinates is defined by rotating the axes
over the grid angle α and taking the origin of the new Cartesian frame at
the reference point (xr, yr). The coordinate transformations are given by

x′ = (x− xr) cosα + (y − yr) sinα (4.15)

y′ = (y − yr) cosα− (x− xr) sinα (4.16)

and

x = xr + x′ cosα− y′ sinα (4.17)
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y = yr + y′ cosα + x′ sinα (4.18)

4.1.4 Coordinate transforms in the vertical

4.1.4.1 σ-coordinates

The σ-coordinate is defined by (Phillips, 1957)

σ =
z + h

H
=
z + h

h+ ζ
(4.19)

where σ varies between 0 at the bottom and 1 at the surface2. The reverse
formula is obviously

z = σH − h (4.20)

so that the grid spacing in the vertical becomes

∆z = H∆σ (4.21)

The spacings of vertical σ-points ∆σ are horizontally uniform, but can be
taken as either uniform or non-uniform in the vertical.

Advantages are:

• much simpler boundary conditions at the surface and bottom

• a better resolution of surface and bottom layers

However there are well-known disadvantages of using σ-coordinates:

• areas with steep bathymetric gradients are difficult to present

• large errors can be produced by discretisation of the baroclinic pressure
gradient

A non-uniform σ-grid can be obtained by means of a transformation of the
form

σ̂ = F (σ) or its inverse σ = G(σ̂) (4.22)

where F and G are increasing functions and σ̂ equals 0 at the bottom and
1 at the surface. Davies & Jones (1991) defined the following logarithmic
transformations

σ =
1

α

[
ln(1 +

σ̂

σ0
) +

σ̂

σ∗

]
(4.23)

2Note that the definition is different from the traditional one σ = (z − ζ)/H with
−1 ≤ σ ≤ 0.
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σ = 1− 1

α

[
ln(1 +

1− σ̂
σ0

) +
1− σ̂
σ∗

]
(4.24)

where

α = ln(1 +
1

σ0
) +

1

σ∗
(4.25)

The first (second) form provides a more refined resolution at the bottom (sur-
face). The extent of the logarithmic grid is set by the tunable parameter σ∗.

Burchard & Bolding (2002) considered a formulation with refined resolu-
tions near both the bottom and surface

σ̂ =
tanh [(dl + du)σ − dl] + tanh dl

tanh dl + tanh du
(4.26)

Increasing the values of the (positive) parameters dl or du will provide a
higher resolution in respectively the bottom or surface layer at the expense
of a coarser resolution in the remaining parts of the water column.

A vertical grid is then constructed by firstly taking a series of uniformly
spaced σ-levels, i.e. σk = (k − 1)/N, k = 1, N + 1 where N is the number of
vertical layers. In the case of a non-uniform grid, the corresponding values
of σ̂k are obtained from the transformation formula. Examples are given in
Figure 4.5a-b. The first one shows that the vertical grid positions are more
densily packed and the grid spacings are smaller in the bottom (surface)
layer for a logarithmic transformation concentrated at the bottom (surface).
The Burchard & Bolding (2002) formulation (with dl = du) has enhanced
resolutions both near the surface as near the bottom but a coarser resolution
in the middle of the water column.

4.1.4.2 generalised σ-coordinates

Instead of using the traditional σ-coordinate a generalised vertical “s” coor-
dinate can be defined by

z = F (x1, x2, s, t) (4.27)

with (x1,x2) = (x,y), (λ,φ) or (ξ1,ξ2) and where s = 0 at the bottom and
s = 1 at the surface so that

F (x1, x2, 0, t) = −h , F (x1, x2, 1, t) = ζ (4.28)

The vertical grid spacing now becomes

∆z =
∂F

∂s
∆s = h3∆s (4.29)
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(a) (b)

Figure 4.5: Transformed coordinate σ̂ = F (σ) (a) and vertical grid spacing
normalised to the total water depth ∆σ̂ = ∂F/∂σ/N (b): formulation (4.23)
with σ∗ = 0.25, s0 = 0.1 (solid), (4.24) with the same parameter values
(dots), (4.26) with dl = du = 1.5 (dashes).

The distance between two neighbouring points in 3-D space now becomes

∆d2 = h21∆ξ
2
1 + h22∆ξ

2
2 + h23∆s

2 (4.30)

Song & Haidvogel (1994) related the s-coordinate to the σ-coordinate by
letting

F = sH − h+ hF∗(x1, x2, s) , F∗(x1, x2, 0) = F∗(x1, x2, 1) = 0 (4.31)

Equation (4.29) is re-written as

h3 = H + h
∂F∗
∂s

= H(1 +
h

H

∂F∗
∂s

) ' H(1 +
∂F∗
∂s

) (4.32)

where the approximation is made that h ' H. The assumption is reasonable
since the s-coordinate is designed for non-shallow areas with large bathymet-
ric gradients, such as shelf breaks. The s-coordinate, defined by (4.31) is
related to the σ-coordinate by

σ = s+
h

H
F∗(x1, x2, s) ' s+ F∗(x1, x2, s) (4.33)

and

∆σ =
∆z

H
' (1 +

∂F∗
∂s

)∆s (4.34)

which means that the Sung-Haidvogel s-coordinate can be seen as a gener-
alised σ-coordinate with non-uniform spacings in the horizontal if F∗ 6= 0.
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The new coordinate should be defined so that it can represent surface
and bottom layers in shallow as well as deep waters and can deal with areas
with a steep topography. Song & Haidvogel (1994) proposed the following
expression for F∗(s):

F∗(x1, x2, s, t) = max

[
0,
h− hc
h

(C(s) + 1− s)
]

C(s) =
(1− b) sinh [θ(s− 1)]

sinh θ
+
b

2

[
tanh [θ(s− 0.5)]

tanh(0.5θ)
− 1

]
(4.35)

where hc is a critical water depth below which the s-coordinate reduces to the
σ-coordinate and b and θ are tunable parameters. The vertical grid is defined
by taking uniformly spaced s-levels, i.e. sk = (k − 1)/N, k = 1, N + 1 and
calculating the corresponding generalised σ-levels using (4.33). Figure 4.6

a) b)

Figure 4.6: Distribution of vertical levels along a transect from Denmark to
Norway: uniform σ-coordinates (a), non-uniform σ-coordinates using (4.35)
(b).

compares the distribution of vertical levels for a uniform σ-spacing with the
s-coordinate levels obtained from (4.35), using b = 1, hc = 200 and θ = 8,
for a transect across the Norwegian trench in the North Sea. While the σ-
coordinate provides an accurate resolution in the shallow waters near the
Danish coast (left side of the figure), the layer thickness is ∼30 m in the
deepest part which is clearly insufficient. A (vertically) non-uniform σ-grid
will not resolve the problem since any improvement for the deepest parts
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will detoriate the solution in the coastal areas. The s-coordinate has a much
more accurate resolution in deep water as seen in the figure on the right and
reduces to the σ-coordinate when h < hc near the coasts.

A transformed vertical grid can also be constructed through the inverse
relation

s = G(x1, x2, z, t) (4.36)

or, after substituting from (4.20)

s = G∗(σ, x, y, t) (4.37)

with G∗(0, x, y, t) = 0, G∗(1, x, y, t) = 1 and ∂G∗/∂σ > 0. For example,
Burchard & Bolding (2002) proposed

sk = ασk + (1− α)σ̂k (4.38)

where

α = min
[(σ̂k − σ̂k−1)− (σk − σk−1)hc/h

(σ̂k − σ̂k−1)− (σk − σk−1)
, 1
]

(4.39)

and σ̂ is obtained from (4.26) with hc a critical water depth below which
s = σ.

4.1.4.3 normalised vertical coordinate

In analogy with the horizontal curvilinear coordinate system the vertical s-
coordinate is normalised using

H∆σ = h3∆s (4.40)

Setting ∆s = 1 between neighbouring grid points in the (transformed) verti-
cal direction and using similar normalised coordinates in the horizontal one
has

∆d2 = h21∆ξ
2
1 + h22∆ξ

2
2 + h23∆s

2 = h21 + h22 + h23 (4.41)

so that h1, h2, h3 become the grid spacings in the three (transformed) coor-
dinate directions.

Implementation

The type of vertical grid is selected with the switch iopt grid vtype

1 : uniform σ-grid

2 : non-uniform vertical σ-grid

3 : non-uniform σ in the horizontal and vertical
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In the following, the general vertical coordinate will be represented by its
normalised value s. This implies that

∂

∂z
=

1

H

∂

∂σ
=

1

h3

∂

∂s
(4.42)

4.2 Basic model equations

4.2.1 3-D mode equations

4.2.1.1 Cartesian coordinates

The model equations are derived with the following (classic) assumptions.

1. The Boussinesq approximation is applied which means that the density
is constant except for the Earth’s gravity force.

2. The vertical component of the momentum equations reduces to the hy-
drostatic balance between the vertical pressure gradient and the gravity
force.

3. The horizontal component of the Earth’s rotation vector is set to zero.
The assumption becomes invalid for non-hydrostatic water masses or
near the equator.

The equations for the “3-D” mode consist of the continuity equation,
the momentum equations and the equations of temperature and salinity. In
Cartesian coordinates and using the previous assumptions these are given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4.43)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv

= − 1

ρ0

∂p

∂x
+ F t

x +
∂

∂z

(
νT
∂u

∂z

)
+

∂

∂x
τxx +

∂

∂y
τxy (4.44)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu

= − 1

ρ0

∂p

∂y
+ F t

y +
∂

∂z

(
νT
∂v

∂z

)
+

∂

∂x
τyx +

∂

∂y
τyy (4.45)

∂p

∂z
= −ρg (4.46)
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∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

=
1

ρ0cp

∂I

∂z
+

∂

∂z

(
λT
∂T

∂z

)
+

∂

∂x

(
λH

∂T

∂x

)
+

∂

∂y

(
λH

∂T

∂y

)
(4.47)

∂S

∂t
+ u

∂S

∂x
+ v

∂S

∂y
+ w

∂S

∂z

=
∂

∂z

(
λT
∂S

∂z

)
+

∂

∂x

(
λH

∂S

∂x

)
+

∂

∂y

(
λH

∂S

∂y

)
(4.48)

where (u,v) are the horizontal components of the current, w the vertical cur-
rent, f the Coriolis frequency given by 2Ω sinφ where Ω = π/43082 radians/s
is the Earth’s rotation frequency, p the pressure, ρ the density, ρ0 a uniform
reference density, g the acceleration of gravity, (F t

x,F
t
y) the components of

the astronomical tidal force, νT and λT the vertical turbulent diffusion co-
efficients, τij the horizontal friction tensor, T potential temperature, I the
solar irradiance within the water column, cp the specific heat capacity of sea
water at constant pressure, and S salinity.

Note that T is not the in situ temperature but potential temperature,
defined as the temperature of a fluid parcel, moved adiabatically to a certain
level (usually taken at or near the surface). The reason is that (4.47) is
derived from the conservation equation of heat. This equation contains an
extra term due to compresssibility, which vanishes if T is interpreted as
potential temperature (Gill, 1982).

Since the model does not allow for the formation of sea ice at the surface,
the temperature must stay above the freezing point of seawater, i.e.

T > αfS , αf = −0.0575 0C/PSU (4.49)

The horizontal diffusion tensor is introduced to represent horizontal sub-
grid scale processes not resolved by the model and is parameterised as follows

τxx = −τyy = νHDT , τxy = τyx = νHDS (4.50)

DT =
∂u

∂x
− ∂v

∂y
DS =

∂u

∂y
+
∂v

∂x
(4.51)

where DT and DS are called the horizontal tension and shearing strain and νH
denotes the horizontal diffusion coefficient which is either given as a constant
or taken as proportional to the local rate of strain

νH = Cm∆x∆y
√
D2
T +D2

S (4.52)
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Similarly, the scalar diffusion coefficient is either a constant or given by

λH = Cs∆x∆y
√
D2
T +D2

S (4.53)

Equations (4.52) and (4.53) are the well-known Smagorinsky (1963) param-
eterisations. The coefficients Cm and Cs usually have the same value of
the order of 0.1–0.2. The sub-grid parameterisation (4.50) and (4.51) differs
from the one implemented in COHERENS V1 and several other ocean models.
The present formulation has been introduced in the Modular Ocean Model
(Pacanowski & Griffies, 2000; Griffies, 2004) on general considerations about
basic symmetry properties of the physical system.

In the present implementation it is assumed that “horizontal” diffusion
of momentum and scalars takes place along horizontal planes. Diffusion
along the vertical is parameterised by the vertical diffusion coefficients νT
and λT . It is, however, physically more meaningfull to replace these notions
of horizontal mixing, produced by two-dimensional meso-scale eddies, and
vertical mixing, representing small scale turbulence on scales of 10−3 to 10 m,
by mixing along and across isopycnals. Since νT � νH and λT � λH , the
horizontal mixing scheme may produce an excessive diapycnal diffusion in
the presence of lateral fronts. Complex schemes for isopycnal mixing have
been developed and applied to global ocean models (e.g. Griffies et al., 1998).
They are not implemented in the current version of COHERENS. The main
reason is that the program is primarily developed for coastal and regional
seas where a sufficiently high resolution can be taken to resolve meso-scale
eddies in the horizontal.

The pressure can be eliminated from the above equations by rewriting
(4.46) as

∂p

∂z
= −ρ0(g − b) (4.54)

where the buoyancy b is defined by

b = −
(
ρ− ρ0
ρ0

)
g (4.55)

Integrating (4.54) using the surface boundary condition p = Pa at z = ζ
where Pa is the surface atmospheric pressure, the horizontal pressure gradient
terms in (4.44) and (4.45) can be written as

− 1

ρ0

∂p

∂xi
= −g ∂ζ

∂xi
− 1

ρ0

∂Pa
∂xi
− ∂q

∂xi
(4.56)

where xi equals x or y and q is the vertically integrated buoyancy

q = −
∫ ζ

z

b dz (4.57)
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The first two terms on the right of (4.56) represent the barotropic, the third
one the baroclinic component.

The following additional remarks are to be given:

• The vertical diffusion term and the diffusion coefficients νT and λT are
obtained from a turbulence model. Various schemes, including simple
algebraic schemes and more complex second order closure schemes, are
implemented (see Section 4.4).

• The acceleration due to gravity can be set in the program to a constant
value or obtained from the geodetic formula as function of latitude (see
Appendix 2 of Gill, 1982)

g = 9.78032 + 0.005172 sin2 φ− 0.00006 sin2 2φ (4.58)

• The absorption of solar irradiance within the water column is generally
a function of solar wavelength and the penetration depth of solar light.
The formulation chosen in the model follows the one given by Paulson
& Simpson (1977) whereby I is given by

I(x1, x2, z) = Qrad

(
Re−z/λ1 + (1−R)e−z/λ2

)
(4.59)

where R represents the absorption of the red end of the solar spectrum
in the upper (1–2) meters of the water column, 1−R the absorption of
blue-green light over larger depths and Qrad the solar radiance incident
on the surface. Since turbidity effects are not explicitly taken into
account by the physical model, values of R, λ1, λ2 � λ1 depend on the
optical properties of the water masses and can be selected following
e.g. the optical classification scheme of Jerlov (1968). Solar radiance
is further discussed in Section 4.6.

• The astronomical force is only relevant in deep ocean waters and can
be neglected on the shelf and in the coastal zone. Expressions for its
components are given as a sum of tidal harmonics (see Section 4.5).

4.2.1.2 transformed coordinates

The forms of the model equations in orthogonal curvilinear and s-coordinates
(ξ1,ξ2,s) are derived in Appendix A. The equations of continuity and momen-
tum, written in conservative and operator format, become

1

h3

∂h3
∂t

+
1

h1h2h3

[
∂

∂ξ1
(h2h3u) +

∂

∂ξ2
(h1h3v)

]
+

1

h3

∂ω

∂s
= 0 (4.60)
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1

h3

∂

∂t
(h3u) +Ah1(u) +Ah2(u) +Av(u) +

v

h1h2

(
u
∂h1
∂ξ2
− v∂h2

∂ξ1

)
− 2Ωv sinφ

= − g

h1

∂ζ

∂ξ1
− 1

ρ0h1

∂Pa
∂ξ1

+ F b
1 + F t

1 +Dmv(u) +Dmh1(τ11) +Dmh2(τ12)

(4.61)

1

h3

∂

∂t
(h3v) +Ah1(v) +Ah2(v) +Av(v) +

u

h1h2

(
v
∂h2
∂ξ1
− u∂h1

∂ξ2

)
+ 2Ωu sinφ

= − g

h2

∂ζ

∂ξ2
− 1

ρ0h2

∂Pa
∂ξ2

+ F b
2 + F t

2 +Dmv(v) +Dmh1(τ21) +Dmh2(τ22)

(4.62)

where ω represents the transformed vertical velocity, further discussed below.
The spherical case is recovered from the above equations by letting h1 =
R cosφ and h2 = R.

Apart from a constant factor of proportionality, which can be set to 1
without loss of generality, the metric coefficients hi are related to the model
grid spacings along the horizontal coordinate directions (∆x,∆y) and the
vertical (∆z) by

∆x = h1 , ∆y = h2, ∆z = h3∆s (4.63)

The advection and diffusion operators are defined by

Ah1(F ) =
1

h1h2h3

∂

∂ξ1
(h2h3uF ) (4.64)

Ah2(F ) =
1

h1h2h3

∂

∂ξ2
(h1h3vF ) (4.65)

Av(F ) =
1

h3

∂

∂s
(ωF ) (4.66)

Dmh1(F ) =
1

h1h22h3

∂

∂ξ1
(h22h3F ) (4.67)

Dmh2(F ) =
1

h21h2h3

∂

∂ξ2
(h21h3F ) (4.68)

Dmv(F ) =
1

h3

∂

∂s

(
νT
h3

∂F

∂s

)
(4.69)

The parameterised form of the horizontal shear stress tensor in orthogonal
curvilinear coordinates is given by Pacanowski & Griffies (2000); Griffies
(2004)

τ11 = −τ22 = νHDT , τ12 = τ21 = νHDS (4.70)



92 CHAPTER 4. PHYSICAL MODEL

DT =
h2
h1

∂

∂ξ1

(
u

h2

)
− h1
h2

∂

∂ξ2

(
v

h1

)
DS =

h1
h2

∂

∂ξ2

(
u

h1

)
+
h2
h1

∂

∂ξ1

(
v

h2

)
(4.71)

The quantity ω in (4.60) and (4.66) is the transformed vertical current
normal to the s-coordinate surfaces. Physical and transformed vertical cur-
rent are related by

w = ω − h3
(
∂s

∂t
+

u

h1

∂s

∂ξ1
+

v

h2

∂s

∂ξ2

)
(4.72)

An alternative form, more useful for numerical discretisation, is

w =
1

h3

∂

∂t
(h3z) +Ah1(z) +Ah2(z) +Av(z) (4.73)

The horizontal vector F t
i represents the components of the astronomical tidal

force, discussed in Section 4.5. The expression for the baroclinic pressure
gradient now contains two terms as a consequence of the vertical coordinate
transformation

F b
i = − 1

hih3

[
∂

∂ξi
(h3q)−

∂

∂s

(
q
∂z

∂ξi

)]
(4.74)

where

q = −
∫ 1

s

bh3 ds (4.75)

The equations for potential temperature and salinity can, in the absence of
a particle sinking term, be cast in a more general form, representing the
transport of an arbitrary concentration ψ (T , S, sediment, contaminant,
biological state variable)

1

h3

∂

∂t
(h3ψ) + Ah1(ψ) +Ah2(ψ) +Av(ψ)

= P(ψ)− S(ψ) +Dsv(ψ) +Dsh1(ψ) +Dsh2(ψ) (4.76)

where P(ψ), S(ψ) represent all source, respectively sinks terms. Two-dimensional
diffusion of scalars is taken along constant s-surfaces. This gives

Dsh1(ψ) =
1

h1h2h3

∂

∂ξ1

(
λH

h2h3
h1

∂ψ

∂ξ1

)
(4.77)

Dsh2(ψ) =
1

h1h2h3

∂

∂ξ2

(
λH

h1h3
h2

∂ψ

∂ξ2

)
(4.78)
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Dsv(ψ) =
1

h3

∂

∂s

(λψT
h3

∂F

∂s

)
(4.79)

where λψT is the vertical diffusion coefficient for the scalar ψ3.

Smagorinsky’s diffusion coefficients in curvilinear coordinates are given
by

νH = Cmh1h2

√
D2
T +D2

S (4.80)

λH = Csh1h2

√
D2
T +D2

S (4.81)

Applying (4.76) for temperature and salinity one has

1

h3

∂

∂t
(h3T ) + Ah1(T ) +Ah2(T ) +Av(T )

=
1

ρ0cph3

∂I

∂s
+Dsv(T ) +Dsh1(T ) +Dsh2(T ) (4.82)

1

h3

∂

∂t
(h3S)+Ah1(S)+Ah2(S)+Av(S) = Dsv(S)+Dsh1(S)+Dsh2(S) (4.83)

4.2.2 2-D mode equations

The 3-D continuity and momentum equations presented in the previous sec-
tion need to be supplemented by additional 2-D equations for the depth-
integrated current and surface elevation. There are two main reasons.

1. The surface elevation appearing in the momentum equations cannot be
determined from the 3-D equations only.

2. The numerical solution of the 3-D equations are constrained by the
CFL limit which poses a severe limit on the time step used in the
numerical discretisations. This can be resolved by solving the simpler
2-D equations with a smaller 2-D time step and inserting the results
into the 3-D equations which can now be solved with a larger 3-D time
step. The method, known as the mode splitting technique, is further
discussed in Chapter 5.

3The same vertical diffusion coefficient is taken for temperature and salinity, i.e. λTT =
λST = λT .
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The 2-D mode equations consists of three equations for the surface elevation
and the depth-integrated currents, defined by

(U, V ) =

1∫
0

(u, v)h3 ds (4.84)

The equations are then obtained by integrating (4.60)–(4.62) over the verti-
cal. This gives

∂ζ

∂t
+

1

h1h2

[
∂

∂ξ1
(h2U) +

∂

∂ξ2
(h1V )

]
= 0 (4.85)

∂U

∂t
+ Ah1(U) +Ah2(U) +

V

Hh1h2

(
∂h1
∂ξ2

U − ∂h2
∂ξ1

V

)
− 2ΩV sinφ

= −gH
h1

∂ζ

∂ξ1
− H

ρ0h1

∂Pa
∂ξ1

+ F b
1 +HF t

1 + τs1 − τb1

+ Dmh1(τ11) +Dmh2(τ12)− δAh1 + δDh1 (4.86)

∂V

∂t
+ Ah1(V ) +Ah2(V ) +

U

Hh1h2

(
∂h2
∂ξ1

V − ∂h1
∂ξ2

U

)
+ 2ΩU sinφ

= −gH
h2

∂ζ

∂ξ2
− H

ρ0h2

∂Pa
∂ξ2

+ F b
2 +HF t

2 + τs2 − τb2

+ Dmh1(τ21) +Dmh2(τ22)− δAh2 + δDh2 (4.87)

where F b
i are the depth-integrated components of the baroclinic pressure

gradient F b
i , τsi and τbi are the components of the surface and bottom stress

(normalised with the reference density ρ0)

(τs1, τs2) =
νT
h3

∂(u, v)

∂s

∣∣∣∣
sur

(4.88)

(τb1, τb2) =
νT
h3

∂(u, v)

∂s

∣∣∣∣
bot

(4.89)

The advection and diffusion operators for transports are given by

Ah1(F ) =
1

h1h2

∂

∂ξ1

(
h2
UF

H

)
(4.90)

Ah2(F ) =
1

h1h2

∂

∂ξ2

(
h1
V F

H

)
(4.91)
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Dmh1 =
1

h1h22

∂

∂ξ1

(
h22F

)
(4.92)

Dmh2 =
1

h21h2

∂

∂ξ2

(
h21F

)
(4.93)

The 2-D equivalents of the shear stress tensor can be written as

τ11 = −τ22 = νHDT , τ12 = τ21 = νHDS (4.94)

νH =

1∫
0

νHh3 ds (4.95)

DT =
h2
h1

∂

∂ξ1

(
U

Hh2

)
− h1
h2

∂

∂ξ2

(
V

Hh1

)
DS =

h1
h2

∂

∂ξ2

(
U

Hh1

)
+
h2
h1

∂

∂ξ1

(
V

Hh2

)
(4.96)

The last two terms on the right of (4.86)–(4.87) only contain the baroclinic
part of the 3-D current

(δu, δv) =

(
u− U

H
, v − V

H

)
(4.97)

The explicit forms are

δAh1 =
1

h1h2

1∫
0

[
∂

∂ξ1

(
h2h3δu

2
)

+
∂

∂ξ2
(h1h3δuδv)

+ h3
∂h1
∂ξ2

δuδv − h3
∂h2
∂ξ1

δv2

]
ds (4.98)

δAh2 =
1

h1h2

1∫
0

[
∂

∂ξ1
(h2h3δuδv) +

∂

∂ξ2

(
h1h3δv

2
)

+ h3
∂h2
∂ξ1

δuδv − h3
∂h1
∂ξ2

δu2

]
ds (4.99)

δDh1 =
1

h1h2

 1

h2

∂

∂ξ1

h22 1∫
0

νHδDTh3 ds

+
1

h1

∂

∂ξ2

h21 1∫
0

νHδDSh3 ds
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(4.100)

δDh2 =
1

h1h2

 1

h2

∂

∂ξ1

h22 1∫
0

νHδDSh3 ds

− 1

h1

∂

∂ξ2

h21 1∫
0

νHδDTh3 ds


(4.101)

where δDT and δDS are given by (4.71) with (u,v) replaced by (δu,δv).
The 3-D and 2-D continuity equations involve either the 3-D and 2-D

current. An alternative form, involving the baroclinic and depth-integrated
currents, can be derived by multiplying (4.60) by h3 and substracting (4.85)
multiplied by the transformed grid spacing h3/H. This gives

1

h1h2

[
∂

∂ξ1
(h2h3δu) +

∂

∂ξ2
(h1h3δv)

]
+
U

h1

∂

∂ξ1

(
h3
H

)
+
V

h2

∂

∂ξ2

(
h3
H

)
+
∂ω

∂s
= 0

(4.102)
The second and third term only arise if the transformed grid spacing varies
in the horizontal, i.e. in case of the most general vertical coordinate trans-
formation.

Implementation

The solution method of the previous set of equations is controlled by the
following model switches

iopt mode 2D Switch to enable (1) or disable (0) the solution of the 2-D
mode equations. It is advised not to switch off the 2-D mode unless for
1-D water column applications (see Section 4.3.1 below) or for carefully
designed applications.

iopt mode 3D Switch to enable (1) or disable (0) the solution of the 3-D
hydrodynamic equations (4.60)–(4.62). It is recommended not to disable
the 3-D mode unless for purely 2-D (depth-averaged) applications (in
which case the switch is automatically disabled by the program).

iopt temp Type of update for the temperature field.

0 : Temperature is uniform in space and time.

1 : Temperature is uniform in time, but non-uniform in space.

2 : Temperature is non-uniform in space and time and obtained by
solving equation (4.82).

iopt sal Type of update for the salinity field.

0 : Salinity is uniform in space and time.
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1 : Salinity is uniform in time, but non-uniform in space.

2 : Salinity is non-uniform in space and time and obtained by solving
equation (4.83).

4.2.3 Equation of state

Equations (4.61), (4.62), (4.102), (4.85)–(4.87) and (4.82)–(4.83) form a com-
plete set of equations for u, v, ω, ζ, U , V , T and S with the constraints (4.84),
provided that the density ρ, which enter the equations through the baroclinic
gradient and the turbulent diffusion coefficients νT , λT (see Section 4.4 be-
low), is known. Contrary to temperature and salinity, the density is not
obtained by an additional transport equation but by means of an equation
of state (EOS).

The International EOS (Millero et al., 1980), adopted in the previous ver-
sion of COHERENS relates the density to the three state variables T , S and
p where T is the in situ temperature. A more appropriate formulation still
based on the International EOS, but with in situ temperature replaced by
potential temperature was considered by Jacket & McDougall (1995). More
recently, McDougall et al. (2003) proposed an EOS using potential tempera-
ture, which according to the authors is more accurate than the International
EOS and computationally more efficient. The latter formulation has there-
fore been implemented in COHERENS V2.0.

With a precision of 0.003 kg/m3 the density is given by

ρ(S, T, p) = P1(S, T, p)/P2(S, T, p) (4.103)

P1 = a0 + a1T + a2T
2 + a3T

3 + a4S + a5ST + a6S
2

+ a7p+ a8pT
2 + a9pS + a10p

2 + a11p
2T 2

P2 = 1 + b1T + b2T
2 + b3T

3 + b4T
4 + b5S + b6ST + b7ST

3

+ b8S
3/2 + b9S

3/2T 2 + b10p+ b11p
2T 3 + b12p

3T (4.104)

where ai and bi are empirical parameters listed in Table 4.1. Neglecting
density variations in the water column and atmospheric pressure, p can be
approximated by

p ' −ρg(z − ζ) (4.105)

The expansion coefficients for temperature and salinity are obtained from
(4.103)–(4.104)

βT = −1

ρ

∂ρ

∂T
=

1

P2

∂P2

∂T
− 1

P1

∂P1

∂T
(4.106)
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Table 4.1: Values of the empirical parameters in the McDougall et al. (2003)
equation of state.

a0 999.843699 b1 7.28606739×10−3

a1 7.3521284 b2 -4.60835542×10−5

a2 -5.45928211×10−2 b3 3.68390573×10−7

a3 3.98476704×10−4 b4 1.80809186×10−10

a4 2.96938239 b5 2.14691708×10−3

a5 -7.23268813×10−3 b6 -9.27062484×10−6

a6 2.12382341×10−3 b7 -1.78343643×10−10

a7 1.04004591×10−2 b8 4.76534122×10−6

a8 1.03970529×10−7 b9 1.63410736×10−9

a9 5.1876188×10−6 b10 5.30848875×10−6

a10 -3.24041825×10−8 b11 -3.03175128×10−16

a11 -1.2386936×10−11 b12 -1.27934137×10−17

βS =
1

ρ

∂ρ

∂S
=

1

P1

∂P1

∂S
− 1

P2

∂P2

∂S
(4.107)

For compatibility with the previous COHERENS version and simple case stud-
ies, the model allows to use a simpler linear equations of state, obtained by
expanding (4.103)–(4.107) around a reference state

ρ = ρ0 (1 + βS(S − Sr)− βT (T − Tr)) (4.108)

where Tr and Sr are constant reference values, and (ρ0,βT ,βS) are obtained
from (4.103)–(4.104) with T = Tr, S = Sr, p = 0.

Implementation

The following switches, used for the evaluation of density and density gradi-
ents, are available:

iopt dens Selects type of equation of state.

0 : The density is set to a uniform value, obtained from (4.103)-(4.104)
using constant reference values for T , S and p = 0. The expansion
coefficients are to zero.

1 : Density is calculated from the linear EOS (4.108). Constant values
are taken for the expansion coefficients.

2 : ρ, βT and βS are calculated from (4.103)–(4.104) with p = 0.

3 : ρ, βT and βS are calculated from (4.103)–(4.104) with a non-zero
pressure.
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iopt dens grad Selects the numerical algorithm for discretisation of the baro-
clinic pressure gradient (see Section 5.3.13 for details).

0 : The gradient is set to zero in all momentum equations.

1 : Traditional σ-coordinate (second order) method.

2 : Using the z-level method.

3 : The method of Shchepetkin & McWilliams (2003)

4.3 Model equations on reduced grids

4.3.1 Water column (1-D) mode

In case of a water column application the horizontal grid reduces to one
singular point so that the grid becomes one-dimensional. The following sim-
plifications are made:

1. Advective and horizontal diffusion terms are set to zero.

2. All components of the horizontal pressure gradient are neglected except
for the barotropic surface slope term.

3. The continuity equation is not solved. This means in particular that
the vertical current is no longer calculated.

In the absence of an horizontal grid, the model equations can be written using
Cartesian coordinates in the horizontal and σ-coordinates in the vertical. The
momentum equations (4.61), (4.62) then reduce to

1

h3

∂

∂t
(h3u)− 2fv = −g ∂ζ

∂x
+ F t

1 +
1

h3

∂

∂s

(νT
h3

∂u

∂s

)
(4.109)

1

h3

∂

∂t
(h3v) + 2fu = −g∂ζ

∂y
+ F t

2 +
1

h3

∂

∂s

(νT
h3

∂v

∂s

)
(4.110)

where

• the Coriolis frequency is defined by specifying the latitude of the loca-
tion, i.e. f = 2Ω sin(φref )

• the surface slope and the surface elevation ζ, needed to calculate the
total water depth H and the vertical grid spacing h3 are specified as
external “surface” forcing conditions

The one-dimensional version of the scalar transport equation (4.76) is given
by

1

h3

∂

∂t
(h3ψ) = P(ψ)− S(ψ) +

1

h3

∂

∂s

(λψT
h3

∂ψ

∂s

)
(4.111)
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4.3.2 Depth-averaged (2-D) mode

In depth-averaged mode it is assumed that the 3-D current and all 3-D scalar
quantities are depth-independent.

From (4.102) it follows that ω = 0. The hydrodynamic equations are
then given by (4.85)–(4.87) without the baroclinic terms, i.e.

δAh1 = δAh2 = δDh1 = δDh2 = 0 (4.112)

The depth-integrated form of the transport equation for a depth-independent
scalar ψ is obtained by integrating (4.76) over the vertical

∂

∂t

(
Hψ
)

+ Ah1(Hψ) +Ah2(Hψ) = H
(
P(ψ)− S(ψ)

)
+ Fψ

s − F
ψ
b

+
1

h1h2

[ ∂
∂ξ1

(
λH

h2
h1

∂ψ

∂ξ1

)
+

∂

∂ξ2

(
λH

h1
h2

∂ψ

∂ξ2

)]
(4.113)

where Fψ
s and Fψ

b are the fluxes at respectively the surface and the bottom.
The vertically integrated horizontal diffusion coefficients take the form

νH = Cmh1h2H

√
D

2

T +D
2

S , λH = Csh1h2H

√
D

2

T +D
2

S (4.114)

where DT , DS are defined by (4.96).

4.4 Turbulence schemes

4.4.1 Introduction

The objective of a turbulence scheme is to parameterise the effects of tur-
bulent motions. It is assumed that turbulence is fully developed and in a
quasi-equilibrium state. The main characteristics can be described as follows
(see e.g. Ferziger, 2005; Kantha & Clayson, 2000a):

• Three-dimensional. In contrast to the mean flow, which may be two-
dimensional, turbulent motions are fully three-dimensional. This defi-
nition excludes the two-dimensional turbulence of geophysical flows on
the meso-scale, mentioned in Section 4.2 which is parameterised by a
horizontal mixing scheme.

• Randomness. Turbulence has a “short-time” memory. This means that
turbulent states arising from slight changes in initial, boundary or for-
cing conditions become uncorrelated in time within short time intervals.
As a consequence, the only meaningfull way to analyse turbulence is
through its statistical properties.
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• Broad spectrum. Turbulent motions span a large spectrum of scales in
space and time.

• Vorticity. In contrast to waves, turbulent motions are characterised
by random vorticity fluctuations. This explains why turbulence can
be visualised in laboratory experiments as a spectrum of eddies on
different spatial scales. On the largest scales, the eddies extract energy
from the mean flow, whereas on the shortest (so-called Kolmogorov)
scales this energy is converted into heat by molecular disssipation.

The spatial scales of turbulence, which need to be taken into account in
models for the ocean, shelf seas or coastal areas, range from 10−3–102 m and
are, except eventually for the largest ones, not resolved by the model. Tur-
bulence schemes need to be developed, based upon the statistical properties
of the turbulence spectrum. Starting point are the Navier-Stokes equations
and the equations of continuity and temperature4, written for convenience in
Cartesian coordinates and tensorial notation

∂Ui
∂t

+ Uj
∂Ui
∂xj

+ εijkfjUk = − 1

ρ0

∂P

∂xi
+ δi3b+ ν

∑
j

∂2Ui
∂x2j

(4.115)

∂Ui
∂xi

= 0 (4.116)

∂T

∂t
+ Ui

∂T

∂xi
= S(T ) + kT

∑
i

∂2T

∂x2i
(4.117)

where summation is performed within each term over repeating indices, Ui
are the velocity components, εijk is 1(-1) if (i,j,k) are in cyclic (anticyclic)
order and 0 if any two indices are equal, δij is the Kronecker symbol (1 if i=j,
0 otherwise), ν and kT are the kinematic viscosity and molecular diffusivity
of heat, P the dynamic pressure5 and fi = 2Ω(cosφ, 0, sinφ) is twice the
Earths’s rotation vector.

All quantities are then decomposed into a mean (designated by an over-
bar) and a fluctuating turbulent part or

Ui = Ui + ui , T = T + θ , P = P + ρ0π , b = b+ β (4.118)

where the fluctuating parts have zero means. The averages can be considered
as ensemble averages over a large number of turbulent states or as a statistical

4In the absence of double-diffusive mixing, which is not implemented in the current
model code, the procedure is similar if temperature is replaced by salinity.

5The dynamic pressure is defined as the pressure minus its homogeneous hydrostatic
part, i.e. P = p+ ρ0g(z − ζ)− Pa.
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mean over the full turbulence spectrum. Since the fluctuations of density can
be taken as small with respect to their mean value, β and θ can be related
by the linearised equation of state

β = gβT θ (4.119)

The mean flow equations are obtained by substituting (4.118) into (4.115-
4.117) and taking the average. This gives

∂Ui
∂t

+ Uj
∂Ui
∂xj

+ εijkfjUk = − 1

ρ0

∂P

∂xi
+ δi3b+ ν

∑
j

∂2Ui
∂x2j

− ∂

∂xj
uiuj (4.120)

∂Ui
∂xi

= 0 (4.121)

∂T

∂t
+ Ui

∂T

∂xi
= P(T ) + kT

∑
i

∂2T

∂x2i
− ∂

∂xi
uiθ (4.122)

since P(T ) = P(T ) in view of (4.82). Equations (4.120)–(4.122) are the
same as (4.115)–(4.117) except for the last terms in the momentum and
temperature equations which represent the exchange of momentum and heat
between the mean and turbulent flows. The two terms appear as a divergence
of fluxes of momentum uiuj and temperature uiθ.

It remains to find suitable parameterisations for these turbulent fluxes.
The oldest approach — dating back from the time of Boussinesq in 1877 —
and also the most commonly used, is to model the momentum fluxes like the
viscous stresses in laminar flows

− uiuj = νT

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
kδij (4.123)

where

k =
1

2
(u2 + v2 + w2) (4.124)

is the kinetic energy of turbulent motions and νT is called the eddy viscosity
(diffusion) coefficient. In analogy with (4.123) the temperature fluxes are
usually parameterised using the down-gradient diffusion hypothesis

− uiθ = λT
∂T

∂xi
(4.125)

Despite the similarity with laminar flows, there are fundamental differences
between turbulent and laminar diffusion
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• For fully developed turbulence, νT and λT are larger than their laminar
counterparts by several orders of magnitude.

• The turbulent diffusion coefficients are of the same order of magnitude
whereas the molecular coefficients for momentum, T and S are of the
order of (ν, kT , kS) ∼ (10−6, 10−7, 10−9) m2/s.

• Turbulence is initiated by instabilities of the mean flow. This means in
practice that νT and λT are not constant but depend on the mean flow
properties generating and controling those instabilities, i.e. the current
shear ∂Ui/∂xj and the density gradient ∂ρ/∂xi.

The vertical diffusion terms in the model equations (4.44),(4.45) and
(4.47)–(4.48) are then derived by evaluating the flux divergences using (4.123)–
(4.125) and making the shallow water approximation. This condition is com-
patible with the assumption of hydrostatic balance and states that the hori-
zontal (mean flow) scales are larger than the vertical one, or ∂/∂x, ∂/∂y �
∂/∂z. This gives

− ∂

∂x
u2 − ∂

∂y
uv − ∂

∂z
uw ' − ∂

∂z
uw ' ∂

∂z
νT
∂U

∂z

− ∂

∂x
uv − ∂

∂y
v2 − ∂

∂z
vw ' − ∂

∂z
vw ' ∂

∂z
νT
∂V

∂z

− ∂

∂x
uθ − ∂

∂y
vθ − ∂

∂z
wθ ' − ∂

∂z
wθ ' ∂

∂z
λT
∂T

∂z

(4.126)

since

− uw ' νT
∂U

∂z
, −vw ' νT

∂V

∂z
(4.127)

by application of the shallow water approximation to (4.123). A similar
expression applies for the diffusion of salinity. It is clear that (u,v,T ,S) in
(4.43)–(4.45), (4.47)–(4.48) are now interpreted as statistical averages.

The turbulence, as stated in the beginning of this subsection, is now
reduced to the implementation of suitable expressions for the turbulent dif-
fusion coefficients. A large number of schemes, applied for hydraulic en-
gineering and in the geophysical context, are available from the scientific
literature. For detailed overviews, the reader is referred to the text books
of Kantha & Clayson (2000a); Pope (2001) and the reviews by Rodi (1984);
Burchard (2002).

The turbulence models, implemented in COHERENS, fall in three cate-
gories of increasing complexity
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1. The simplest formulation is to set the diffusion coefficients to constant
values

νT = νc , λT = λc (4.128)

where νc and λc are set be the user. Despite its simplicity, it is rec-
ommended not to use this form. Turbulence usuallly occurs in the
surface and bottom boundary layers, which requires spatially varying
coefficients.

2. Models using simplified empirical or semi-empirical (algebraic) rela-
tions, not derived from a turbulence closure theory.

3. Models obtained from the Reynolds averaged Navier-Stokes (RANS)
equations. These models are physically more robust, but have a larger
computational overhead. The basic assumptions (4.123) and (4.125)
are then not assumed a priori but derived a posteriori from theory.

Implementation

The general type of turbulence scheme is selected with the switch iopt vdif coef:

0 : Vertical diffusion is set to zero.

1 : Constant diffusion coefficients.

2 : Algebraic schemes (Section 4.4.2).

3 : RANS models (Section 4.4.3).

4.4.2 Algebraic schemes

4.4.2.1 Richardson number dependent formulations

The Richardson number is defined by

Ri =
N2

M2
(4.129)

where

N2 =
1

h3

∂b

∂s
=

g

h3

(
βT
∂T

∂s
− βS

∂S

∂s

)
(4.130)

M2 =
1

h23

[(∂u
∂s

)2
+
(∂v
∂s

)2]
(4.131)

are the squared buoyancy and shear frequencies. The first one measures the
degree of stratification which is stable if N2 > 0 (Ri > 0) and unstable if
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N2 < 0 (Ri < 0). The formulations below are based on theoretical and ob-
servational evidence that turbulence decreases in the first case and increases
in the second one.

Pacanowski & Philander (1981) proposed the following formulation

νT = ν0pf
np
p (Ri) + νbp (4.132)

λT = νTfp(Ri) + λbp (4.133)

fp(Ri) = min
[
(1 + αpRi)

−1, ν1/npmax

]
(4.134)

An upper limit has been imposed on fp to prevent that turbulence becomes
too large in the case of unstable stratification (Ri < 0).

The following default values are used6

ν0p = 10−2 , np = 2 , αp = 5 , νbp = 10−4 , λbp = 10−5 , νmax = 3 (4.135)

The upper bounds for νT and λT are then given by 0.03, respectively 0.052.
The scheme has been primarily developed for application in global ocean

models (e.g. Semtner & Chervin, 1988). It has the advantage of being less
sensitive to vertical resolution than the more advanced turbulence closures
discussed in Section 4.4.3. In the absence of stratification the coefficients take
uniform values which makes the scheme less reliable for the study of neutral
tidal and wind-driven flows. Test simulations in the Rhine plume (Ruddick
et al., 1995) showed that the results are sensitive to a calibration of the model
constants. Peters et al. (1988) derived a similar formulation using different
values of the parameters calibrated from microstructure measurements in the
Pacific Ocean.

The second scheme use the historical empirical relations proposed by
Munk & Anderson (1948):

νT = ν0mfm(Ri) + νb (4.136)

λT = ν0mgm(Ri) + λb (4.137)

with

fm(Ri) = min
[
(1 + αmRi)

−n1 , νmax
]

(4.138)

gm(Ri) = min
[
(1 + βmRi)

−n2 , λmax
]

(4.139)

and νb and λb are uniform background mixing coefficients selected by the
user. The following default parameter values taken

ν0m = 0.06 , αm = 10 , βm = 3.33 , n1 = 0.5 , n2 = 1.5 , νmax = 3 , λmax = 4
(4.140)

6Note that ν0p, νbp, λbp and ν0m in (4.135) and (4.140) are expressed in the same unit
as νT and λT , i.e. m2/s, whereas νmax, λmax are dimensionless.
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4.4.2.2 flow-dependent formulations

In shelf and coastal seas tides are a prominent source of turbulence. Obser-
vations in the Irish Sea (Bowden et al., 1959) indicate that the eddy viscosity
is proportional to the magnitude of the tidal current. A suitable parameter-
isation for tidal flow can then be written as

νT =
(
α(ξ1, ξ2, t)Φ(σ) + νw

)
fm(Ri) + νb (4.141)

λT =
(
α(ξ1, ξ2, t)Φ(σ) + νw

)
gm(Ri) + λb (4.142)

The flow field is represented by the depth-independent factor α. Explicit
forms are described below. In the absence of stratification the vertical vari-
ation of turbulence is presented by a prescribed profile for Φ(σ) which takes
account of the reduction of turbulence in the near bottom and surface layers.
Following Davies (1990) the following piecewise linear profile is adopted

Φ(σ) =
(

(1− r1)σ/δ1 + r1

)
/D for 0 ≤ σ ≤ δ1

Φ(σ) = 1/D for δ1 ≤ σ ≤ 1− δ2
Φ(σ)

(
r2 − (r2 − 1)(1− σ)/δ2

)
/D for 1− δ2 ≤ σ ≤ 1 (4.143)

where

D = 1 +
1

2
δ1(r1 − 1) +

1

2
δ2(r2 − 1) (4.144)

is a normalisation factor such that the depth-integral of Φ(σ) equals 1. The
parameters δ1, δ2 are the fractional depths of the bottom and surface layers,
and r1, r2 the ratios of the bottom and surface values of Φ with respect to
the interior value. Default values for the parameters are

δ1 = δ2 = 0 , r1 = r2 = 1 (4.145)

giving a uniform vertical profile. More details about a proper selection of
these parameters can be found in e.g. Davies (1993).

In analogy with the formulation used by Naimie et al. (1994) for simu-
lating the circulation around Georges Bank the damping functions fm(Ri)
and gm(Ri) take the form given by the Munk-Anderson expressions (4.138)–
(4.139). Following Glorioso & Davies (1995) wind-induced turbulence is re-
lated to the surface friction velocity using the simple form

νw = λ?u∗s (4.146)

where λ? is a constant tunable parameter and the surface friction velocity
u?s is given by

u?s = τ 1/2s = (τ 2s1 + τ 2s2)
1/2 (4.147)



4.4. TURBULENCE SCHEMES 107

The last terms on the right of (4.141)–(4.142) are the uniform background
eddy viscosity νb and diffusivity λb.

The following three formulations for the flow factor α can be selected

α = K1(U
2 + V 2)1/2 (4.148)

α = K2(U
2 + V 2)/(H2ω1) (4.149)

α = K1(U
2 + V 2)1/2∆b/H (4.150)

where ∆b measures the thickness of the bottom boundary layer as a function
of the bottom friction velocity u∗b:

∆b = min(Cνu∗b/ω1, H) (4.151)

u∗b = τ
1/2
b = (τ 2b1 + τ 2b2)

1/2 (4.152)

and ω1 is a characteristic frequency. In shallow areas ∆b = H so that (4.150)
reduces to (4.148). The following default values are taken

K1 = 2.5× 10−3 , K2 = 2× 10−5 , Cν = 2.0 , ω1 = 10−4s−1 (4.153)

The eddy viscosity parameterisation (4.141) without stratification has
been used for the prediction of tidal currents and surface elevations in the
Northwest European Continental Shelf (e.g. Davies, 1990; Davies et al., 1997),
the Irish and Celtic Seas (e.g. Davies & Jones, 1992; Davies, 1993) and the
shelf edge off the West coast of Scotland (Proctor & Davies, 1996).

A parabolic eddy viscosity/diffusivity has been implemented for simplified
test case studies

νT = κfm(Ri)u∗bHσ(1− σ)

λT = κgm(Ri)u∗bHσ(1− σ) (4.154)

where fm, gm are the damping functions defined by (4.138)–(4.139).

Implementation

An algebraic scheme is taken if iopt vdif coef=2. The type of scheme is further
selected by the switch iopt turb alg:

1 : Pacanowski-Philander

2 : Munk-Anderson

3 : Flow dependent scheme with α given by (4.148)

4 : Flow dependent scheme with α given by (4.149)

5 : Flow dependent scheme with α given by (4.150)

6 Parabolic profile (4.154)
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4.4.3 RANS models

Contrary to the previous schemes, RANS models do not take the eddy
viscosity-diffusivity concept as a prior assumption. The turbulent fluxes are
derived from a series of transport equations (Section 4.4.3.1). These equa-
tions contain unknown second and third-order correlations which need to be
parameterised (Section 4.4.3.2). Analytical solutions for geophysical flows
and expresssions for the eddy viscosity and diffusivity coefficients are de-
rived in Section 4.4.3.3. The solutions contain the turbulent energy k and its
dissipation ε as unknown variables. Alternative formulations using a mixing
length are given in Section 4.4.3.5. Different schemes are presented in Sec-
tion 4.4.3.4. Alternative formulations using a mixing length are defined in
Section 4.4.3.5. Background mixing schemes are discussed in Section 4.4.3.6.

4.4.3.1 general form of the RANS equations

Equations for the turbulent fluctuations ui and β are obtained by substract-
ing the mean equations (4.120)–(4.122) from the non-averaged equations
(4.115)–(4.117) and making use of (4.119). One obtains

∂ui
∂t

+
∂

∂xj
(Uiuj+uiUj+uiuj)+εijkfjuk = − ∂π

∂xi
+βδi3+

∂

∂xj
uiuj+ν

∑
j

∂2ui
∂x2j

(4.155)
∂ui
∂xi

= 0 (4.156)

∂β

∂t
+

∂

∂xi
(Uiβ + gβTTui + uiβ) = kT

∑
i

∂2β

∂x2i
+
∂uiβ

∂xi
(4.157)

where the overbar has been omitted for convenience above mean quantities
and the temperature equation is converted to an equation for the perturbed
buoyancy β by multiplication with the factor gβT .

Adding the i-component of (4.155) multiplied by uj and the j-component
multiplied by ui and taking the average, the following system of equations
is obtained for the Reynolds stresses uiuj, making use of the zero divergence
condition (4.156)

d

dt
uiuj +

∂

∂xk
uiujuk + fk(εikluluj + εjklului) =

− ∂

∂xi
ujπ −

∂

∂xj
uiπ − uiuk

∂Uj
∂xk
− ujuk

∂Ui
∂xk

+ δi3ujβ + δj3uiβ + π

(
∂ui
∂xj

+
∂uj
∂xi

)
+ ν

∂2

∂x2k
uiuj − 2ν

∂ui
∂xk

∂uj
∂xk
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(4.158)

where use is made of the zero divergence condition (4.156) and the total
derivative is defined by

d

dt
=

∂

∂t
+ Uk

∂

∂xk
(4.159)

The transport equation for the buoyancy fluxes uiβ is derived by multiplying
(4.155) by β, (4.157) by ui adding and making the average

d

dt
uiβ +

∂

∂xj
uiujβ + εijkfjukβ =

− ∂

∂xi
βπ − uiuj

∂b

∂xj
− ujβ

∂Ui
∂xj

+ δi3β2 + π
∂β

∂xi

+ ν
∂

∂xj
β
∂ui
∂xj

+ kT
∂

∂xj
ui
∂β

∂xj
− (ν + kT )

∂ui
∂xj

∂β

∂xj
(4.160)

The β2-equation is obtained by multiplying (4.157) with 2β and averaging

d

dt
β2 +

∂

∂xi
uiβ2 = −2uiβ

∂b

∂xi
+ kT

∑
i

∂2β2

∂x2i
− 2kT

∑
i

(
∂β

∂xi

)2

(4.161)

Equations (4.158)–(4.161) form a complete set of equations for all second-
order correlations. An important equation is the one for turbulent kinetic
energy k, defined by (4.124) and obtained from (4.158) by taking half its
trace

dk

dt
+

∂

∂xj
ui(

1

2
uiuj + π)− ν ∂

2k

∂x2i
= −uiuj

∂Ui
∂xj

+ δi3uiβ − ν
(
∂ui
∂xj

)2

= P +G− ε (4.162)

where summation is taken over all indices. The terms on the right have the
following meaning:

• P is a source term and equals the energy withdrawn by the “energy
containing eddies” at the largest spatial scales of the turbulence spec-
trum

• G is a buoyancy term which can shown to be (see below) a sink term
for stable stratification (Ri > 0) and a source term for an unstable
stratification (Ri < 0).

• ε represents the dissipation of turbulent energy which occurs at the
smallest scales of turbulence.
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One main properties of fully developed turbulence is that it adjusts rapidly
to a state of equilibrium. This means that the terms on the right hand side
are the dominant ones and P +G ' ε. A further advantage is that P and G
don’t contain unknown correlations.

4.4.3.2 parameterisation of the RANS equations

The following parameterisations are adopted for the unknown correlations in
(4.158), (4.160) and (4.161).

• All Coriolis terms are set to zero. The main reason is that rotation
introduces a large level of complexity. The simplification can be con-
sidered as reasonable when the Coriolis period is much larger than the
decay time of turbulence or fε/k � 1. For an account of Coriolis
effects see Galperin et al. (1989); Kantha et al. (1989).

• Pressure-strain correlation

π

(
∂ui
∂xj

+
∂uj
∂xi

)
= −c1

ε

k
(uiuj −

2

3
δijk)− c21(Pij −

2

3
δijP )

−c22k
(
∂Ui
∂xj

+
∂Uj
∂xi

)
− c23(Dij −

2

3
δijP )

−c3(Gij −
2

3
δijG) (4.163)

The first term represents the Rotta (1951) hypothesis of return to
isotropy. The tensors in the remaining terms are defined by

Pij = −uiuk
∂Uj
∂xk
− ujuk

∂Ui
∂xk

(4.164)

Dij = −uiuk
∂Uk
∂xj
− ujuk

∂Uk
∂xi

(4.165)

Gij = δi3ujβ + δj3uiβ (4.166)

P =
1

2
Pii = −uiuk

∂Ui
∂xk

(4.167)

G =
1

2
Gii = δi3uiβ = wβ (4.168)

• Pressure-buoyancy gradient correlation

π
∂β

∂xi
= −c1β

ε

k
uiβ + c21βukβ

∂Ui
∂xk
− c22βukβ

∂Uk
∂xi
− c3βδi3β2 (4.169)
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Table 4.2: Values of the turbulence constants in the RANS equations accor-
ding to the different models implemented in COHERENS.

c1 c21 c22 c23 c3 c1β c21β c22β c3β Rβ

MY82 3.01 0 -0.16 0 0 3.74 0 0 0 0.61
KC94 3.01 0 -0.16 0 0 3.74 0.7 0 0.2 0.61
BB95 1.8 0.6 0 0 0.6 3.0 0.33 0 0.333 0.8
HR82 2.2 0.55 0 0 0.55 3.0 0.5 0 0.5 0.8
CA01 2.49 0.777 0.256 0.207 0.402 5.95 0.8 0.2 0.333 0.72
CA02 2.1 0.803 0.257 0.183 0.576 5.6 0.8 0.2 0.333 0.477

• Dissipation terms

2ν
∂ui
∂xk

∂uj
∂xk

=
2

3
δijε (4.170)

2kT

(
∂β

∂xi

)2

= χ =
ε

k

β2

Rβ

(4.171)

ν
∂

∂xj
β
∂ui
∂xj

= kT
∂

∂xj
ui
∂β

∂xj
= (ν + kT )

∂ui
∂xj

∂β

∂xj
= 0 (4.172)

Since the laminar diffusion scales are much smaller than the scales of
the largest eddies, the laminar terms can be neglected

ν
∂2

∂x2k
uiuj = 0 , kT

∂2β2

∂x2i
= 0 (4.173)

Equation(4.170) states that turbulence energy is dissipated isotropi-
cally. Equation(4.171) assumes that the dissipation time scale of tur-
bulence kinetic enery k/ε is proportional to the one for the buoyancy
variance β2/χ. The ratio is given by the parameter Rβ.

• Pressure transport is neglected

∂

∂xi
ujπ = 0 ,

∂

∂xi
βπ = 0 (4.174)

The expressions for the pressure-strain and pressure-buoyancy gradient
are compiled from different sources and presented in their most general form.
The parameterisations contain 10 parameters c1, c21, c22, c23, c3, c1β, c21β,
c22β, c3β, Rβ. The values used in COHERENS are taken from different sources:
Mellor & Yamada (1982); Kantha & Clayson (1994); Burchard & Baumert
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(1995); Hossain & Rodi (1982) and two schemes taken from Canuto et al.
(2001). The six models are further denoted by MY82, KC94, BB95, HR82,
CA01 and CB01. Values of the parameters are listed in Table 4.2. For
readers, familiar with the Ai, Bi, Ci parameters used in MY82 and KC94,
the following conversion rules apply

c1 =
B1

6A1

, c21 = 0 , c22 = −2C1 , c23 = 0 , c3 = 0

c1β =
B1

6A2

, c21β = C2 , c22β = 0 , c3β = C3 , Rβ =
B2

B1

(4.175)

Different schemes are available for the modelisation of the third-order
correlations, total derivative (i.e. time derivative and advective terms) in
(4.158)–(4.162). They are based on the classification scheme introduced by
Mellor & Yamada (1974, 1982) and Galperin et al. (1988).

1. Non-equilibrium or “level 3” method. The left hand sides of (4.160)
and (4.161) are set to zero while

d

dt
uiuj +

∂

∂xk
uiujuk =

2

3
δij(P +G− ε) (4.176)

in (4.158) and

1

2

∂

∂xj
u2iuj = −csk

∂

∂xj

(k
ε
ujuk

∂k

∂xk

)
(4.177)

in (4.162). The expression in the last equation was proposed by Daly &
Harlow (1970) and differs somewhat from the one given in the Mellor-
Yamada papers. This will be further discussed below.

2. Quasi-equilibrium or “level 2.5” method after Galperin et al. (1988).
This is the same as previous except that P+G is set to ε in all equations
except in the one for turbulent energy. This mean that the left hand
side of (4.158) becomes zero as well.

3. Equilibrium or “level 2” method. A full equilibrium, i.e. P +G = ε in
all equations including the k-equation.

A major simplification is additionally achieved by making the boundary layer
approximation. This means that horizontal derivatives of mean quantities
and the mean vertical current are all set to zero.
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4.4.3.3 stability functions

Substituting the parameterisations and approximations, presented in the pre-
vious subsection into the equations for the second-order correlations, the
problem reduces to solving a system of linear equations. Solutions are pre-
sented below for each of the three equilibrium levels.
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Non-equilibrium method

The following system of linear equations is obtained where a vertical deriva-
tive is denoted by a subscript z and bz = N2 by its definition (4.130)

u2 =
2

3

[
k − k

εc1

(
(2− 2c21 + c23)uwUz − (1− c21 − c23)vwVz + (1− c3)wβ

)]
v2 =

2

3

[
k +

k

εc1

(
(1− c21 − c23)uwUz − (2− 2c21 + c23)vwVz − (1− c3)wβ

)]
w2 =

2

3

[
k +

k

εc1

(
(1− c21 + 2c23)(uwUz + vwVz) + 2(1− c3)wβ

)]
uv = − k

εc1
(1− c21)(uwVz + vwUz)

uw = − k

εc1

[
(1− c21)w2Uz + c22kUz − c23(u2Uz + uvVz)− (1− c3)uβ

]
vw = − k

εc1

[
(1− c21)w2Vz + c22kVz − c23(v2Vz + uvUz)− (1− c3)vβ

]
uβ = − k

εc1β

[
uwN2 + (1− c21β)wβUz

]
vβ = − k

εc1β

[
vwN2 + (1− c21β)wβVz

]
wβ = − k

εc1β

[
w2N2 + c22β(uβUz + vβVz)− (1− c3β)β2

]
β2 = −2

k

ε
RβN

2wβ

(4.178)

The solutions for the vertical fluxes of momentum and buoyancy can be
written as

− uw = Su
k2

ε

∂U

∂z
, −vw = Su

k2

ε

∂V

∂z
, −wβ = Sb

k2

ε
N2 (4.179)

Comparing with (4.127) and (4.125) the eddy viscosity and diffusivity are
given by

νT = Su
k2

ε
, λT = Sb

k2

ε
(4.180)

Note that these expressions are obtained from the RANS theory and not
postulated a priori.

The coefficients Su and Sb are the so-called stability functions and can be
expressed as function of the stability parameters

αM =
k2

ε2
M2 , αN =

k2

ε2
N2 (4.181)
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The two parameters are the squares of the ratio of respectively the shear and
buoyancy frequency with respect to the turbulence frequency and represent
the influence of shear and density gradients on the turbulent fluxes. The
solutions for Su and Sb can be written as

Su = (Ca1 + Ca2αM + Ca3αN)/D

Sb = (Ca4 + Ca5αM + Ca6αN)/D

D = 1 + Ca7αM + Ca8αN + Ca9α
2
M + Ca10αMαN + Ca11α

2
N (4.182)

Explicit expressions for the coefficients Cai as function of the RANS parame-
ters are given in Appendix B.

When applying the boundary layer approximation, the diffusion term
(4.177) in the k-equation can be written as

csk
∂

∂xj

(k
ε
ujuk

∂k

∂xk

)
' csk

∂

∂z

(k
ε
w2
∂k

∂z

)
=

∂

∂z

(
νk
∂k

∂z

)
(4.183)

where the diffusion coefficient is given by

νk = csk
k2

ε

w2

k
= Sk

k2

ε
(4.184)

The stability coefficient for turbulent energy diffusion is given by

Sk = csk
w2

k
=

2

3
csk

[
1− 1

c1

(
(1− c21 + 2c23)αMSu + 2(1− c3)αNSb

)]
(4.185)

Quasi-equilibrium method

The equations for the second order correlations are the same as in (4.178)
except for the components of turbulent energy

u2 =
2

3
k
(

1− 1− c21 − c23
c1

)
− 2k

εc1

[
(1− c21)uwUz +

1

3
(c21 + c23 − c3)wβ

]
v2 =

2

3
k
(

1− 1− c21 − c23
c1

)
− 2k

εc1

[
(1− c21)vwVz +

1

3
(c21 + c23 − c3)wβ

]
w2 =

2

3
k
(

1− 1− c21 + 2c23
c1

)
+

2k

3εc1

(
(3− c21 + 223 − 2c3)wβ

)
(4.186)

The solutions for the vertical fluxes can be written in the form (4.179)–
(4.181), obtained with the non-equilibrium method. Difference is that the
stability functions now only depend on αN . Two cases can be distinguished
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1. Case c22β = 0.

Su =
Cb1 + Cb2αN

(1 + Cb3αN)(1 + Cb4αN)

Sb =
Cb5

1 + Cb3αN
(4.187)

2. Case c22β 6= 0.

Su =
Cc1 + Cc2αNSb

1 + Cc3αN
(4.188)

Sb is obtained as solution of the quadratic equation

(Cc4 + Cc5αN)αNS
2
b + (Cc6 + Cc7αN)Sb + Cc8 = 0 (4.189)

giving

Sb = −(Cc6 + Cc7αN) + sD1/2

2(Cc4 + Cc5αN)αN

D = (Cc6 + Cc7αN)2 − 4Cc8(Cc4 + Cc5αN)αN (4.190)

where s is the sign of Cc6 + Cc7αN .

The expression for the turbulent energy stability coefficient now becomes

Sk = csk
w2

k
=

2csk
3c1

(
c1− 1 + c21− 2c23− (3− c21 + 2c23− 2c3)αNSb

)
(4.191)

Equilibrium method

In this case equilibrium between production and dissipation of turbulent
energy is assumed in all second moment equation and in the equation of
turbulent energy. This means that

P +G = ε or in dimensionless form SuαM − SbαN = 1 (4.192)

since

P +G

ε
= −uwUz + vwVz

ε
+
wβ

ε
= Su

k2

ε2
M2 − Sb

k2

ε2
N2 = SuαM − SbαN

(4.193)
Using (4.192) and the expressions for Su and Sb, the following relation be-
tween the stability parameters can be derived

1 + Cd1αM + Cd2αN + Cd3α
2
M + Cd4αMαN + Cd5α

2
N = 0 (4.194)
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which can be rewritten as a quadratic equation for the squared inverse time
scale κ2 = ε2/k2

κ4 + (Cd1M
2 + Cd2N

2)κ2 + Cd3M
4 + Cd4M

2N2 + Cd5N
4 = 0 (4.195)

If the limit κ = 0 is taken, then αM = αN = ∞ so that Su = Sb = 0. From
(4.194) one therefore deduces that turbulence ceases when the Richardson
number exceeds a critical value Ric obtained by setting κ2 = 0. This gives

Ric = −Cd4
Cd5

if c22β = 0

Ric =

√
C2
d4 − 4Cd3Cd5 − Cd4

2Cd5
if c22β 6= 0 (4.196)

From Table 4.3 it is seen that Ric strongly depends on the type of model.
Since αM = αN/Ri equation (4.194) can be rewritten as

(1 + Cd2αN + Cd5α
2
N)Ri2 + αN(Cd1 + Cd4αN)Ri+ Cd3α

2
N = 0 (4.197)

Solving (4.197) for Ri as a function of αN and substituting into the expres-
sions (4.187)–(4.190), the stability functions can be expressed as function of
Ri only. The dependence of Su and Sb on Ri is shown in Figure 4.7 for the six
RANS models. Also shown is the case of stable stratification with limiting
conditions which is further discussed in Section 4.4.3.6.

Alternative methods

Besides the expressions given above, the COHERENS program allows to use
simpler formulations for the stability coefficients. In the first one the quasi-
equilibrium expressions (4.187)–(4.190) are reset to their constant neutral
values obtained in the absence of stratification (αN = 0)

Su = Su0 , Sb = Sb0 (4.198)

Values of Su0 and Sb0 are given in Table 4.37. In the second form, Su and
Sb are set to their neutral values, multiplied by the Munk-Anderson damp-
ing/amplification factors, defined by (4.138) and (4.139) or

Su = Su0fm(Ri) , Sb = Sb0gm(Ri) (4.199)

The latter scheme resembles the one adopted in the earlier standard version
of the k − ε model (Rodi, 1984).

7Node that Su0 is the same as the parameter cµ used in the standard k − ε theory
(Rodi, 1984).
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Figure 4.7: Stability coefficients Su (left column), Sb (right column) as a
function of the Richardson number using the equilibrium method for RANS
model MY82 (solid), KC94 (dots), BB95 (dashes), HR82 (dash-dots), CA01
(dash and 3 dots), CA02 (long dashes): stable case without limiting condition
(upper row), stable case with limiting condition (middle row), unstable case
(bottom row).
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Table 4.3: Values of critical parameters according to different RANS models.

Su0 Sb0 Ric Ri?c αmax ν0l λ0l
MY82 0.095 0.119 0.197 0.161 15.35 0.050 0.053
KC94 0.095 0.119 0.244 0.183 12.69 0.063 0.065
BB95 0.115 0.173 0.647 0.252 5.92 0.130 0.106
HR82 0.108 0.177 0.579 0.207 4.72 0.123 0.132
CA01 0.077 0.090 0.851 0.281 7.91 0.123 0.088
CA02 0.094 0.095 1.023 0.388 10.07 0.160 0.104

It is remarked that these schemes are physically less robust, but have
been implemented in the code for historical reasons or to perform sensitivity
experiments related to specific details of the turbulence schemes.

Besides the general expressions (4.185) or (4.191) for the diffusion of tur-
bulent energy, the following simpler alternative options for the stability co-
efficient Sk are implemented

Sk = Sk0 (4.200)

and
Sk = Su/σk (4.201)

where Sk0 and σk are model constants. The first form was introduced in k− l
model of Mellor & Yamada (1982), the second in the “standard” k−ε model
(Rodi, 1984), further discussed below. In the former case Sk0 is related to
the Mellor-Yamada parameter Sq by

Sk0 = 21/2ε0Sq (4.202)

with ε0 = S
3/4
u0 (see equation (4.203) below).

4.4.3.4 solution methods

The theories presented in Section 4.4.3.3 define the eddy coefficients as func-
tion of two turbulent parameters: turbulence energy k and its dissipation
rate ε. Such theories, primarily used in hydraulic modelling, are called k− ε
models. The former is determined by solving either the equation for turbu-
lent energy or by the equilibrium relation (4.195). It remains to determine ε
appearing in the expressions for the eddy coefficients, stability parameters,
k-equation and the equilibrium relation (4.195). Different methods, using
either a prescribed analytical expression or a parameterised transport equa-
tion, are given below.

Other theories, like the one advocated by Mellor & Yamada (1974, 1982),
prefer to use the mixing lenth l, representative of the spatial scales of the
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largest (energy-containing) eddies, instead. Such theories are called k− l (or
q2− q2l with q2 = 2k in the Mellor-Yamada terminology) models. The k− ε
and k − l models are separately discussed below.

k − ε models

The schemes are divided into three categories depending on the number of
transport equations which need to be solved.

1. Zero-equation model. The dissipation rate is determined through the
relation

ε = ε0
k3/2

l
(4.203)

where l is the mixing length and ε = S
3/4
u0 where Su0 is the neutral

value of the momentum stability coefficient Su. The mixing length
is determined from one of the available analytical expressions, given
below. Turbulence energy is calculated from the equilibrium relation
(4.195). The method has the advantage that no transport equation
need to be solved in time. The problem is, however, that it may produce
numerical instabilities in the time-integration of the model equations.
This is illustrated in Section 24.1 for the test case pycno.

2. One-equation model. Turbulence energy is obtained from the k-equation.
Inserting the parameterisations of the previous subsection into the
source and sinks terms P and G and the diffusion term, this equa-
tion, written in transformed coordinates and in its most general form,
becomes

1

h3

∂

∂t
(h3k) +Ah1(k) +Ah2(k) +Av(k) =

1

h3

∂

∂s

(νk
h3

∂k

∂s

)
+ νTM

2 − λTN2 − ε+Dsh1(k) +Dsh2(k) (4.204)

with ε given by (4.203) and the advection and diffusion operators de-
fined by (4.64)–(4.66), (4.77)–(4.78). The last two terms represent hori-
zontal diffusion of k. It is noted that advection and horizontal diffusion
are usually neglected. This is achieved in the model by the settings of
two switches (see below).

3. Two-equation model. Besides the k-equation (4.204), a second trans-
port equation is solved for ε. In transformed cordinates, this equation,
including extra horizontal diffusion terms which are usually neglected,
is given by (e.g. Rodi, 1984)

1

h3

∂

∂t
(h3ε) +Ah1(ε) +Ah2(ε) +Av(ε) =

1

h3

∂

∂s

( νk
h3σε

∂ε

∂s

)
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+ c1ε
ε

k

(
νTM

2 − c3ελTN2
)
− c2ε

ε2

k
+Dsh1(ε) +Dsh2(ε)

(4.205)

It should be remarked that, contrary to the k-equation, the ε-equation
is derived from a general equation after many parameterisations. The
parameters appearing in the (4.205) must satisfy the following con-
straint, derived from wall layer theory

c1ε − c2ε = −κ
2Sk0
ε20σε

(4.206)

where Su0 and Sk0 are the neutral values of Su and Sk.

k − l models

In k − l theory all equations are written explicitly as function of k and l.
This is achieved by substituting l for ε through the relation (4.203). The
expressions for the eddy viscosity and diffusion coefficients then take the
form

νT = Smk
1/2l , λT = Shk

1/2l , νk = S̃kk
1/2l (4.207)

where the stability functions (Sm, Sh, S̃k) = (Su, Sb, Sk)/ε0 are function of
the stability parameters (Gm, Gh) = (M2, N2) l2/k = ε20(αM , αN). Equations
(4.182), (4.187), (4.188)–(4.190) and (4.194) remain valid with (αM , αN) re-
placed by (Gm, Gh), (Su, Sb) by (Sm, Sh), κ by κ̃ and (Cai, Cbi, Cci, Cdi) re-
placed by (C̃ai, C̃bi, C̃ci, C̃di) using

(C̃a1, C̃a4) = ε0(Ca1, Ca4) , (C̃a2, C̃a3, C̃a5, C̃a6) =
1

ε0
(Ca2, Ca3, Ca5, Ca6)

(C̃a7, C̃a8) =
1

ε20
(Ca7, Ca8) , (C̃a9, C̃a10, C̃a11) =

1

ε40
(Ca9, Ca10, Ca11)

(C̃b1, C̃b5) = ε0(Cb1, Cb5) , C̃b2 =
Cb2
ε0

, (C̃b3, C̃b4) =
1

ε20
(Cb3, Cb4)

(C̃c1, C̃c8) = ε0(Cc1, Cc8) , C̃c6 = Cc6

(C̃c2, C̃c3, C̃c7) =
1

ε20
(Cc2, Cc3, Cc7) , C̃c4 =

1

ε30
Cc4 , C̃c5 =

1

ε50
Cc5

(C̃d1, C̃d2) =
1

ε20
(Cd1, Cd2) , (C̃d3, C̃d4, C̃d5) =

1

ε40
(Cd3, Cd4, Cd5) (4.208)



122 CHAPTER 4. PHYSICAL MODEL

In case of a two-equation model, the ε-equation is replaced by an equation
for the quantity kl obtained from the Mellor-Yamada q2l-equation by setting
q2 = 2k:

1

h3

∂

∂t
(h3kl) +Ah1(kl) +Ah2(kl) +Av(kl) =

1

h3

∂

∂s

( νk
h3σkl

∂

∂s
(kl)

)
+

1

2
l
(
E1νTM

2 − E3λTN
2
)
− 1

2
ε0k

3/2W̃ +Dsh1(kl) +Dsh2(kl)

(4.209)

with the wall proximity function W̃ defined by

W̃ = 1 + E2

[ l
κ

( 1

H(1− σ) + z0s
+

1

σH + z0b

)]2
(4.210)

where z0s and z0b are roughness lengths at the surface, respectively the bot-
tom (see below). In analogy with the ε-equation the parameters in (4.209)–
(4.210) satisfy the constraint

E2 − E1 + 1 =
2κ2Sk0
ε20σkl

(4.211)

4.4.3.5 mixing length formulations

A mixing length formulation is needed in the case of a zero- or one-equation
model. Four formulations are implemented in the program. The basic re-
quirement in each formulation is that l reduces to the following forms near,
respectively, the bottom and the surface

l ' l1 = κ(σH + z0b) , l ' l2 = κ(H − σH + z0s) (4.212)

where z0s and z0b are the surface and bottom roughness lengths.
The first and simplest expression is the parabolic law

1

l
=

1

l1
+

1

l2
(4.213)

having a maximum at σ ' 0.5.
The second is the “quasi-parabolic” law given by

1

l
=

1

l1

( l1 + l2
l2

)1/2
(4.214)

which differs from the first one in that l has a maximum at σ ' 2/3 closer
to the surface.



4.4. TURBULENCE SCHEMES 123

The third, recommended by Xing & Davies (1996) has the same form as
(4.213) but with l1 replaced by

l1 = κ(σHe−β1σ + z0b) (4.215)

allowing for a larger reduction of the mixing length in the lower parts of the
water column.

The fourth formulation, initially proposed by Blackadar (1962), has the
form

1

l
=

1

l1
+

1

l2
+

1

la
(4.216)

so that l → la far from the boundaries. Mellor & Yamada (1974) defined la
as the ratio of the first to the zeroth moment of the vertical profile of the
turbulent velocity scale k1/2. Hence

la = α1

∫ 1

0

(1− σ)k1/2H dσ /

∫ 1

0

k1/2H dσ (4.217)

4.4.3.6 background mixing

The theory, presented above, is valid for the case of a nearly-isotropic, fully
developed turbulence under homeogeneous or weakly stratified conditions,
but becomes invalid for strongly stratified flows. The reasons are as follows:

• It is known from theory and laboratory experiments that vertical turbu-
lent excursions are impeded by stable stratification. The consequence
is that turbulence becomes anisotropic and the assumption of nearly-
isotropic turbulence can no longer be maintained.

• Even when turbulence decays for an increasing stable stratification,
additional turbulence is generated by the shear and breaking of internal
waves which are not resolved by the model.

In the absence of a comprehensive theory of both effects, simple parame-
terisations have been designed and implemented in the COHERENS code.
The methods consist in adding background mixing coefficients to the ones
calculated by the RANS scheme. Different schemes are available.

The simplest case are uniform background coefficients for momentum and
scalars, selected by the user. The program allows to reset the background
value for momentum to the kinematic viscosity ν which is either a user defined
or given as function of temperature using the ITTC (1978) expresssion (7.24).
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The second one is based on limiting conditions for turbulence variables.
The limitation of vertical overturns by stable stratification is expressed by a
limiting condition of the form

LT/LO < Rl (4.218)

where the constant Rl is of O(1),

LT = −
√
β2/N2 (4.219)

is the Thorpe scale measuring the extent of the vertical excursions, and

LO = (ε/N3)1/2 (4.220)

the Ozmidov scale at which buoyancy and inertial forces are of comparable
magnitude. From theory, laboratory and measurements at sea (see Luyten
et al., 2002, and references therein), it is found that Rl ' 1− 1.3. Using the
last equation of (4.178), (4.179), (4.181) one obtains

(LT
LO

)2
=

β2

Nε
= 2RβSbα

3/2
N (4.221)

Assuming a state of quasi-equilibrium, it can be shown that the right hand
side of (4.221) is an increasing function of αN . The upper limit in (4.218)
then implies a maximum value αmax for αN . Its value is obtained by solving

2RβSbα
3/2
N = R2

l = 2RβR? (4.222)

for Z = α
1/2
N after substitution of (4.187) or (4.190). The result is the poly-

nomial equation

Cb5Z
3 −R?Cb3Z

2 −R? = 0 (4.223)

if c22β = 0 or

Cc5Cc8Z
6 + R∗Cc5Cc7Z

5 + (Cc4Cc8 +R2
∗C

2
c5)Z

4 +R∗(Cc4Cc7 + Cc5Cc6)Z
3

+ 2R2
∗Cc4Cc5Z

2 +R∗Cc4Cc6Z +R2
∗C

2
c4 = 0 (4.224)

if c22β 6= 0. Since Su and Sb are decreasing functions of αN , the stability
functions are limited from below by the constants Sulim and Sblim. The theory
is illustrated in Figure 4.7 where the evolution of Su and Sb as function of
the Richardson number is shown for the simplified equilibrium method and
using an upper limit for αN .
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Substituting the previous limits into the definitions of the eddy coeffi-
cients and αN , the following limiting or background values are obtained

νT > νT lim = Sulimα
1/2
max

k

N
= ν0l

k

N

λT > λT lim = Sblimα
1/2
max

k

N
= λ0l

k

N
ε > εlim = α−1/2max kN

l < lmax = ε0α
1/2
max

k1/2

N
(4.225)

As explained in Luyten et al. (2002) a second limiting condition needs to be
imposed for the turbulence energy

k > klim (4.226)

yielding background values of the form νT ∼ N−1, λT ∼ N−1 and ε ∼ N .
The effect of the limiting condition can be further clarified by mak-

ing the local equilibrium assumption (4.192). Substituting αmax into equa-
tion (4.194) and setting αM = αN/Ri, this equation can be solved for Ri
yielding a second critical Richardson number Ri?c < Ric. The eddy coeffi-
cients are then given by the previous closure schemes or by the background
values (4.225) depending on whether Ri is lower or higher than Ri?c . Values
of the critical parameters αmax, ν0l, λ0l and Ri? are listed in table 4.3.

The third method is a semi-empirical formulation originally proposed by
Large et al. (1994)

νbT = νT0 + νs0

(
1−Ri/Ri0

)p1
λbT = λT0 + νs0

(
1−Ri/Ri0

)p1
(4.227)

where νbT and λbT are background mixing coefficients added to the eddy
coefficients calculated by the model. The first terms on the right hand side
represent mixing due to unresolved internal shear, the second one mixing due
to internal wave braking. The parameters have the following default values

Ri0 = 0.7 , p1 = 3 , (νs0, νT0, λT0) = (0.005, 10−4, 0.5× 10−4) m2/s
(4.228)

Besides the physical limiting conditions, discussed above, the following
numerical lower bounds are always imposed

kmin = 10−14 , εmin = 10−12, lmin = 1.7× 10−10 (4.229)
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The reason for adopting this lower limits is to prevent that unrealistically
large eddy coefficients are created by rounding errors within the intermittent
zone. With the above values and taking Su ∼ Sb ∼ 0.1 the values of νT
and λT are of the order of ∼ 10−17 which are clearly much smaller than the
corresponding laminar viscosity and diffusivity coefficients.

Implementation

A RANS model is selected if iopt vdif coef=3. A series of additional switches
are implemented to determine the specifications of the model.

iopt kinvisc Formulation for kinematic viscosity.

0: user-defined uniform value kinvisc cst

1: ITTC (1978) relation (7.24)

iopt turb dis bbc Type of bottom boundary condition for the dissipation
rate ε.

1: Neumann condition (4.353)

2: Dirichlet condition (4.351)

iopt turb dis sbc Type of surface boundary condition for the dissipation
rate ε.

1: Neumann condition (4.284)

2: Dirichlet condition (4.281)

iopt turb iwlim Type of background mixing scheme as described in Sec-
tion 4.4.3.6.

0: using uniform background coefficients

1: using limiting conditions for turbulence parameters

2: the Large et al. (1994) scheme given by (4.227)–(4.228)

iopt turb kinvisc Selects type of background mixing mixing.

0: user-defined constant value vdifmom cst, vdifscal cst

1: kinematic viscosity as selected by iopt kinvisc

iopt turb lmix Mixing length formulation as described in Section 4.4.3.5.

1: parabolic law (4.213)

2: “modified” parabolic law (4.214)

3: “Xing” formulation (4.215)
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4: “Blackadar” asymptotic formulation (4.216)

iopt turb ntrans Number of transport equations as described in
Section 4.4.3.4.

0: zero-equation model (equilibrium or Mellor-Yamada
level 2 method) with a mixing length selected by iopt turb lmix

1: turbulence energy equation with a mixing length se-
lected by iopt turb lmix

2: k-ε of k-kl equation depending on the value of iopt turb param

iopt turb param Selects type of second turbulent variable.

1: mixing length l (k-l scheme)

2: dissipation rate ε (k-ε scheme)

iopt turb stab form Selects type of stability function.

1: constant value (4.198)

2: Munk-Anderson form (4.199)

3: from RANS model as explained in Section 4.4.3.3

iopt turb stab lev Selects level for stability functions if
iopt turb stab form = 3.

1: quasi-equilibrium method (Section 4.4.3.3)

2: non-equilibrium method (Section 4.4.3.3)

iopt turb stab mod Selects type of closure (RANS) model.

1: MY82-model (Mellor & Yamada, 1982)

2: KC94-model (Kantha & Clayson, 1994)

3: BB95-model (Burchard & Baumert, 1995)

4: HR82-model (Hossain & Rodi, 1982)

5: CA01-model (Canuto et al., 2001)

6: CA02-model (Canuto et al., 2001)

iopt turb stab tke Formulation for the turbulent diffusion coefficient νk (or
stability coefficient Sk) of turbulent energy.

1: constant value for Sk as given by equation (4.200)

2: Sk is taken as proportional to momentum stability
function Su as given by (4.201)



128 CHAPTER 4. PHYSICAL MODEL

3: using the formulation of Daly & Harlow (1970) as
given by (4.185) or (4.191) depending on the value
of iopt turb stab lev

iopt turb tke bcc Type of bottom boundary condition for turbulence en-
ergy.

1: Neumann condition (4.352)

2: Dirichlet condition (4.351)

iopt turb tke sbc Type of surface boundary condition for turbulence en-
ergy.

1: Neumann condition (4.283)

2: Dirichlet condition (4.281)

Table 4.4 gives an overview of all parameters used in the different schemes
and their default values.

Table 4.4: Parameters used in different turbulence schemes (except those listed in
Tables 4.2 and 4.3) and their default values.

name value unit purpose
k-l theory
E1 1.8 – constant in the shear production term of the kl-equation

(4.209)
E2 1.33 – constant in the wall proximity term (4.210) of the kl-equation

(4.209)
E3 1.0 – constant in the buocancy source/sink term of the kl-equation

(4.209)
k-ε theory
c1ε 1.44 – constant in the shear production term of the ε-equation

(4.205)
c2ε 1.92 – constant in the dissipation term of the ε-equation (4.205)
c3ε 0.2 – constant in the buoyancy sink term of the ε-equation (4.205)

in case of stable stratification (N2 > 0)
c3ε 1.0 – constant in the buoyancy source term of the ε-equation (4.205)

in case of unstable stratification (N2 < 0)
diffusion coefficients for turbulence variables
csk 0.15 – Daly-Harlow parameter in (4.177)
Sk0 0.09 – neutral value of the stability coefficient Sk in the k-ε model

(see equation (4.200))
(Continued)
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Table 4.4: Continued

Sq 0.2 – used to determine Sk0 in the Mellor-Yamada model (see equa-
tion (4.202))

σk 1.0 – used to define Sk in (4.201)
σkl 1.83 – ratio of the diffusion coefficients in the k- and kl-equations,

calculated from (4.211)
σε 1.01 – ratio of diffusion coefficients in the k- and ε-equations, calcu-

lated from (4.206)
limiting conditions
klim 10−6 J/kg background limit for k (see equation (4.226))
kmin 10−14 J/kg numerical lower limit for k
lmin 1.7×10−10 m numerical lower limit for l
εmin 10−12 W/kg numerical lower limit for ε
background mixing
Ri0 0.7 – critical Richardson number in the Large et al. (1994) back-

ground mixing scheme (4.227)
λT0 5×10−5 m2/s internal wave breaking diffusion coefficient for scalars in the

Large et al. (1994) background mixing scheme (4.227)
νT0 10−4 m2/s internal wave breaking diffusion coefficient for momentum in

the Large et al. (1994) background mixing scheme (4.227)
νs0 0.005 m2/s maximum mixing due to unresolved vertical shear in the Large

et al. (1994) background mixing scheme (4.227)
boundary conditions
cw 0.0 – surface wave factor used in the surface flux condition (4.283)

for turbulent energy
z0b 0.0 m bottom roughness length in the mixing length formulation

(4.212)
z0s 0.0 m surface roughness length in the mixing length formulation

(4.212)
mixing length formulations
α1 0.2 – constant in the Blackadar (1962) mixing length formulation

(4.217)
β1 2.0 – attenuation factor in the Xing & Davies (1996) mixing length

formulation (4.215)
algebraic schemes
np 2.0 – Pacanowski & Philander (1981) scheme (4.132)–(4.134)
αp 5.0 – Pacanowski & Philander (1981) scheme (4.132)–(4.134)
λbp 10−5 m2/s Pacanowski & Philander (1981) scheme (4.132)–(4.134)
νbp 10−4 m2/s Pacanowski & Philander (1981) scheme (4.132)–(4.134)

(Continued)
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Table 4.4: Continued

νmax 3.0 – Pacanowski & Philander (1981) scheme (4.132)–(4.134)
ν0p 0.01 m2/s Pacanowski & Philander (1981) scheme (4.132)–(4.134)
n1 0.5 – Munk & Anderson (1948) scheme (4.136)–(4.139)
n2 1.5 – Munk & Anderson (1948) scheme (4.136)–(4.139)
αm 10.0 – Munk & Anderson (1948) scheme (4.136)–(4.139)
βm 3.33 – Munk & Anderson (1948) scheme (4.136)–(4.139)
λmax 4.0 – Munk & Anderson (1948) scheme (4.136)–(4.139)
νmax 3.0 – Munk & Anderson (1948) scheme (4.136)–(4.139)
ν0m 0.06 m2/s Munk & Anderson (1948) scheme (4.136)–(4.139)
Cν 2.0 – see equation (4.151)
K1 0.0025 – see equations (4.148) and (4.150)
K2 2×10−5 – see equation (4.149)
r1 1.0 – see equation (4.143)
r2 1.0 – see equation (4.143)
δ1 0.0 – see equation (4.143)
δ2 0.0 – see equation (4.143)
λ? 0.0 m see equation (4.146)
ω1 10−4 s−1 see equation (4.151)

4.5 Astronomical tidal force

Tides are generated by the combined gravitational attraction of the sun and
the moon. The total force is calculated as the gradient of the tidal potential
Φtid. The potential can be written as a series of tidal harmonics

Φtid

g
= ζe = (

3

2
cos2 φ− 1)

N0∑
n=1

A0n(t) cos
(
V0n(t) + u0n(t)

)
+ sin 2φ

N1∑
n=1

A1n(t) cos
(
λ+ V1n(t) + u1n(t)

)
+ cos2 φ

N2∑
n=1

A2n(t) cos
(

2λ+ V2n(t) + u2n(t)
)

+ cos3 φ

N3∑
n=1

A3n(t) cos
(

3λ+ V3n(t) + u3n(t)
)

=
3∑
q=0

Gq(φ)

Nq∑
n=1

Aqn(t) cos
(
qλ+ Vqn(t) + uqn(t)

)
(4.230)
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where ζe is the so-called equilibrium tide, i.e. the change of sea level due
to the tidal attraction only, i.e. in absence of all other forces (pressure,
Coriolis, ...), N0, N1, N2, N3 are the number of respectively long-period,
diurnal, semi-diurnal and terdiurnal tides and q is the species index. Higher
order harmonics can shown to be negligible and are therefore not included
in the expansion. Once the tidal potential is known, the components of the
tidal force in the momentum equations are obtained using

F t
1 =

g

h1

∂ζe
∂ξ1

=
g

h1

(
∂ζe
∂λ

∂λ

∂ξ1
+
∂ζe
∂φ

∂φ

∂ξ1

)
F t
2 =

g

h2

∂ζe
∂ξ2

=
g

h2

(
∂ζe
∂λ

∂λ

∂ξ2
+
∂ζe
∂φ

∂φ

∂ξ2

)
(4.231)

The tidal amplitudes are the product of three factors

Aqn(t) = aqnαqnfqn(t) 0 ≤ q ≤ 3 (4.232)

The first factor aqn is the astronomical tidal amplitude due to the lunar and
solar attractive forces. The Earth can be considered as an elastic body and is
deformed by the tidal force as well. The effect of the Earth tide is to reduce
the astronomical tide and is represented by the second factor αqn. Values
are taken from Foreman et al. (1993). The third term is the so-called nodal
factor and arises from modulations of the the lunar orbit. The term is always
close to 1 and varies with a period of 18.6 years.

The tidal phases are the sum of the geographical factor qλ, the astro-
nomical argument Vqn and the nodal correction factor uqn (further discussed
below). The astronomical phase is evaluated at the longitude of Greenwich
(λ = 0). Its time dependence is given by the astronomical ephemerides8

Vqn(t) = iτ + js+ kh+ lp+mN + nps (4.233)

where i = q and j, k, l, m, n are integers, called the Doodson numbers
(Doodson, 1921), characterising the constituent, and

τ the mean lunar time

s the mean longitude of the moon

h the mean longitude of the sun

p the mean longitude of the lunar perigee

8An additional phase lag of ±900 has to be added for diurnal tides and 00 or 1800 for
diurnal tides.
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N the negative mean longitude of the ascending lunar node

ps the mean longitude of the solar perigee

Since the six astronomical parameters are almost linear time, one can write

Vqn(t) ' Vqn(t0) + (t− t0)ωqn (4.234)

where t0 is the time of the previous mid-night at Greenwich9 and ωqn the
frequency of the tidal constituent. The mean lunar time τ is related to the
mean solar time (H) by

τ = H − s+ h (4.235)

From (4.233) one obtains therefore

Vqn(t0) = (j − i)s0 + (k + i)h0 + lp0 +mN0 + nps0 (4.236)

ωqn = iτ̇0 + jṡ0 + kḣ0 + lṗ0 +mṄ0 + nṗs0 (4.237)

where a ˙ (dot) represents a time derivative and the subscript 0 evaluation
at midnight (GMT). The astronomical ephemerides are calculated in time
using the reference values at the first of January 0h (GMT) of the year 1900.
Explicit expressions (in degrees), taken from Kantha & Clayson (2000b), are

s0 = 270.434358 + 481267.88314137T − 0.001133T 2 + 1.9.10−6T 3

h0 = 279.69668 + 36000.768925485T + 3.03.10−4T 2

p0 = 334.329653 + 4069.0340329575T − 0.10325T 2 − 1.2.10−5T 3

N0 = −259.16 + 1934.14T − 0.0021T 2

ps0 = 281.22083 + 1.71902T + 0.00045T 2 + 3.0.10−6T 3 (4.238)

The number of Julian centuries T is given as function of the current year y
and the day number within the current year d (between 1 and 366) and the
current year y:

T = (27393.500528 + 1.0000000356D)/36525

D = d+ 365(y − 1975) + INT(y − 1973)/4 (4.239)

if the current year is 1975 or later, or

T = (0.5 +D)/36525

D = d+ 365(y − 1900) + INT(y − 1901)/4 (4.240)

9The time t must be referenced with respect to Greenwich mean time (GMT). An
automatic conversion is made by the program if needed.
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for years before 1975. The rate of change of the astronomical ephemerides
are obtained from the above equations (e.g. Schureman, 1941)

τ̇0 = 14.4920520/h , ṡ0 = 0.5490170/h , ḣ0 = 0.0410680/h

ṗ0 = 0.0046420/h , Ṅ0 = −0.0022060/h , ṗs0 = 0.0000020/h

(4.241)

from which the frequencies ωqn are obtained using (4.237).
A total of 56 astronomical tidal constituents are defined within the pro-

gram. The user is free to select a subset of these frequencies as part of the
model setup. The characteristics of all constituents (name, Doodson num-
bers, frequency, amplitude, Greenwich phase) are given in Table 4.5.

Besides the “main” astronomical constituents, defined in Table 4.5, the
harmonic expansion of the tidal potential shows a large number of additional
harmonics with frequencies close to some “main” frequency, but with am-
plitudes much smaller than the main constituent. Their effect is taken into
account through the nodal amplitude and phase factors fqn and uqn. They
are determined as follows. Let

ζen = an0 cos θ +
N∑
k=1

ank cos(θ + ∆θk) (4.242)

be a cluster of constituents around the main component “n” (after omission
of the common factor Gq), with amplitude an0 and total phase θ. Setting
ε = ank/an0 � 1, one obtains

ζen = an0

(
cos θ +

∑
k

εk cos(θ + ∆θk)
)

= an0

(
cos θ +

∑
k

εk(cos θ cos ∆θk − sin θ sin ∆θk)
)

= an0

(
cos θ(1 +

∑
k

εk cos ∆θk)− sin θ
∑
k

εk sin ∆θk

)
= an0fn cos(θ + un) (4.243)

Defining

ρ1 = 1 +
∑
k

εk cos ∆θk , ρ2 =
∑
k

εk sin ∆θk (4.244)

the nodal factors are then given by

fn =
√
ρ21 + ρ22 , un = arctan(ρ2/ρ1) (4.245)
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and making a first order Taylor expansion with respect to εk. Values of ank
are taken from the tables given by Cartwright & Tayler (1971); Cartwright
& Edden (1973).

When the tidal forcing is included in the momentum equations, the tidal
solutions for currents and elevations contain additional higher frequencies
components. These so-called “overtides” are produced by non-linearities in
the model equations and do not appear in the expansion of the tidal potential.
For applications in shelf seas, where the astronomical force becomes negligible
compared to the bottom stress, the tidal forcing is introduced as an open
boundary condition for currents and/or elevations or as a surface boundary
condition in case of a water column application. The external forcing is
usually presented by an expansion of tidal harmonics which may include
overtides. A list of the most relevant overtides is given Table 4.6.
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Table 4.5: Doodson numbers, frequencies (degrees/h), amplitudes (cm) and Green-
wich arguments (degrees) of the tidal constituents which can be used for astronom-
ical and open boundary forcing.

Name Doodson numbers ωqn aqn αqn Vqn(t0)
i j k l m n

Long-period tides (q=0)
S0 0 0 0 0 0 0 0.0000000 19.8419 0.693 0.0
Sa 0 0 1 0 0 -1 0.0410667 0.3103 0.693 h− ps
Ssa 0 0 2 0 0 0 0.0821373 1.9542 0.693 2h
058 0 0 3 0 0 -1 0.123204 0.1142 0.693 3h− ps
Msm0 1 -2 1 0 0 0.4715211 0.4239 0.693 s− 2h− p
Mm 0 1 0 -1 0 0 0.5443747 2.2191 0.693 s− p
Msf 0 2 -2 0 0 0 1.0158958 0.3677 0.693 2s− 2h
Mf 0 2 0 0 0 0 1.0980331 4.2016 0.693 2s
083 0 3 -2 1 0 0 1.5695541 0.1526 0.693 3s− 2h+ p
Mt 0 3 0 -1 0 0 1.6424078 0.8049 0.693 3s− p
093 0 4 -2 0 0 0 2.1139288 0.1287 0.693 4s− 2h
095 0 4 0 -2 0 0 2.1867825 0.1066 0.693 4s− 2p

Diurnal tides (q=1)
α1 1 -4 2 1 0 0 12.3827651 0.0749 0.693 −5s+ 3h+ p− 900

2Q1 1 -3 0 2 0 0 12.8542862 0.2565 0.693 −4s+ h+ 2p− 900

σ1 1 -3 2 0 0 0 12.9271398 0.3098 0.693 −4s+ 3h− 900

Q1 1 -2 0 1 0 0 13.3986609 1.9387 0.6946 −3s+ h+ p− 900

ρ1 1 -2 2 -1 0 0 13.4715145 0.3685 0.6948 −3s+ 3h− p− 900

O1 1 -1 0 0 0 0 13.9430356 10.1266 0.695 −2s+ h− 900

τ1 1 -1 2 0 0 0 14.0251729 0.1325 0.6956 −2s+ 3h+ 900

β1 1 0 -2 1 0 0 14.4145567 0.0749 0.693 −s− h+ p+ 900

M1 1 0 0 1 0 0 14.4966939 0.7965 0.6962 −s+ h+ p+ 900

χ1 1 0 2 -1 0 0 14.5695476 0.1522 0.6994 −s+ 3h− p+ 900

π1 1 1 -3 0 0 1 14.9178647 0.2754 0.7027 −2h+ ps − 900

P1 1 1 -2 0 0 0 14.9589314 4.7129 0.7059 −h− 900

S1 1 1 -1 0 0 1 15.0000000 0.1116 0.7126 ps + 900

K1 1 1 0 0 0 0 15.0410686 14.2408 0.7364 h+ 900

ψ1 1 1 1 0 0 -1 15.0821353 0.1132 0.5285 2h− ps + 900

φ1 1 1 2 0 0 0 15.1232059 0.2028 0.6657 3h+ 900

θ1 1 2 -2 1 0 0 15.5125897 0.1526 0.6784 s− h+ p+ 900

J1 1 2 0 -1 0 0 15.5854433 0.7965 0.6911 s+ h− p+ 900

SO1 1 3 -2 0 0 0 16.0569644 0.1321 0.693 2s− h+ 900

OO1 1 3 0 0 0 0 16.1391017 0.4361 0.6925 2s+ h+ 900

(Continued)
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Table 4.5: Continued

KQ1 1 4 0 -1 0 0 16.6834764 0.0834 0.693 3s+ h− p+ 900

Semi-diurnal tides (q=2)
OQ2 2 -3 0 3 0 0 27.3509801 0.0695 0.693 −5s+ 2h+ 3p
ε2 2 -3 2 1 0 0 27.4238337 0.1804 0.693 −5s+ 4h+ p
2N2 2 -2 0 2 0 0 27.8593548 0.6184 0.693 −4s+ 2h+ 2p
µ2 2 -2 2 0 0 0 27.9682084 0.7463 0.693 −4s+ 4h
238 2 -2 3 0 0 -1 28.0092751 0.0502 0.693 −4s+ 5h− ps
244 2 -1 -1 1 0 1 28.3986628 0.0394 0.693 −3s+h+p+ps+1800

N2 2 -1 0 1 0 0 28.4397295 4.6735 0.693 −3s+ 2h+ p
246 2 -1 1 1 0 -1 28.4807962 0.0436 0.693 −3s+ 3h+ p− ps
ν2 2 -1 2 -1 0 0 28.5125831 0.8877 0.693 −3s+ 4h− p
248 2 -1 3 -1 0 -1 28.5536498 0.0409 0.693 −3s+ 5h− p− ps
γ2 2 0 -2 2 0 0 28.9112506 0.0734 0.693 −2s+ 2p+ 1800

H1 2 0 -1 0 0 1 28.9430375 0.0842 0.693 −2s+ h+ ps + 1800

M2 2 0 0 0 0 0 28.9841042 24.4102 0.693 −2s+ 2h
H2 2 0 1 0 0 -1 29.0251709 0.0746 0.693 −2s+ 3h− ps
λ2 2 1 -2 1 0 0 29.4556253 0.18 0.693 −s+ p+ 1800

L2 2 1 0 -1 0 0 29.5284789 0.6899 0.693 −s+ 2h− p+ 1800

T2 2 2 -3 0 0 1 29.9589333 0.6636 0.693 −h+ ps
S2 2 2 -2 0 0 0 30.0000000 11.3572 0.693 0.0
R2 2 2 -1 0 0 -1 30.0410667 0.095 0.693 h− ps + 1800

K2 2 2 0 0 0 0 30.0821373 3.0875 0.693 2h
η2 2 3 0 -1 0 0 30.6265120 0.1727 0.693 s+ 2h− p
295 2 4 0 0 0 0 31.1801703 0.0452 0.693 2s+ 2h

Ter-diurnal tides (q=3)
M3 3 0 0 0 0 0 43.4761563 0.3455 0.693 −3s+ 3h

Implementation

The following switches are available

iopt astro tide Disables (0) or enables (1) the inclusion of the tidal force in
the momentum equations.

iopt astro pars Selects the type of astronomical forcing (tidal force and at
open boundaries)

0: The astronomical argument is set to zero, the nodal factors are set
to 1.

1: The astronomical arguments are calculated from (4.236) at Green-
wich or at a user-defined reference longitude, the nodal factors are
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set to 1.

2: The astronomical arguments are determined from (4.236) at Green-
wich or at a user-defined reference longitude, the nodal factors are
calculated as function of the astronomical ephemerides

Table 4.6: Doodson numbers, origin, frequencies (degrees/h) and Greenwich argu-
ments (degrees) of the overtides which can be used for the open boundary forcing.

Name Doodson numbers source ωqn Vqn(t0)
i j k l m n

Semi-diurnal tides (q=2)
2SM2 2 4 -4 0 0 0 2S2 −M2 31.0158958 2s− 2h

Ter-diurnal tides (q=3)
2MK3 3 -1 0 0 0 0 2M2 −K1 42.9271398 −4s+3h−900

SO3 3 1 -2 0 0 0 S2 +O1 43.9430356 −2s+ h− 900

MK3 3 1 0 0 0 0 M2 +K1 44.0251729 −2s+3h+900

SK3 3 3 -2 0 0 0 S2 +K1 45.0410686 h+ 900

Quarter-diurnal tides (q=4)
MN4 4 -1 0 1 0 0 M2 +N2 57.4238337 −5s+ 4h
M4 4 0 0 0 0 0 2M2 57.9682084 −4s+ 4h
MS4 4 2 -2 0 0 0 M2 + S2 58.9841042 −2s+ 2h
MK4 4 2 0 0 0 0 M2 +K2 59.0662415 −2s+ 4h
S4 4 4 -4 0 0 0 2S2 60.0000000 0.0

Sixth-diurnal tides (q=6)
2MN6 6 1 0 1 0 0 2M2 +N2 86.4079380 −7s+ 6h+ p
M6 6 0 0 0 0 0 3M2 86.4079380 −6s+ 6h
MSN6 6 1 -2 1 0 0 M2 +S2 +N2 87.4238337 −5s+ 4h+ p
2MS6 6 2 -2 0 0 0 2M2 + S2 87.9682084 −4s+ 4h
2SM6 6 4 -4 0 0 0 2S2 +M2 88.9841042 −2s+ 2h
S6 6 6 -6 0 0 0 3S2 90.0000000 0.0

Eighth-diurnal tides (q=8)
M8 8 0 0 0 0 0 4M2 115.9364169 −8s+ 8h
2MSN88 1 -2 1 0 0 2M2+S2+N2 116.4079380 −7s+ 6h+ p
3MS8 8 2 -2 0 0 0 3M2 + S2 116.9523127 −6s+ 6h
2(MS)88 4 -4 0 0 0 2M2 + 2S2 117.9682084 −4s+ 4h
S8 8 8 -8 0 0 0 4S2 120.0000000 0.0
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4.6 Solar radiation

Deriving a suitable expression for the solar radiation flux is not straightfor-
ward in view of its dependence on atmospheric parameters (atmospherical
absorption and reflection, cloud coverage, albedo of the sea surface) whose
influence is difficult to parameterise. The approach, described here, partially
follows Rosati & Miyakoda (1988). The radiation entering at the top of the
atmosphere is given by

Qs = Q0pcorH(sin γ�) (4.246)

where Q0 = 1367.0 W/m2 is the solar constant, γ� the altitude of the sun
and H the Heaviside function (H(x) = 0 for x < 0 and = x otherwise). The
factor pcor represents a correction term due to the elliptical orbit of the earth
and is usually expressed as a function of the day number of the year J :

pcor = 1 + 0.03344 cos(J ′ − 2.80) (4.247)

J ′ = 0.9856J (4.248)

The altitude of the sun is calculated from

sin γ� = sinφ sin δ� + cosφ cos δ� cosH� (4.249)

where δ� is the declination of the sun, H� the sun’s hour angle and φ the
latitude. The angle δ�, measured in degrees, is obtained from the series
expansion

δ� = δ0 +
3∑

n=1

(an cosnJ ′ + bn sinnJ ′) (4.250)

with

δ0 = 0.33281

(a1, a2, a3) = (−22.984,−0.34990,−0.13980)

(b1, b2, b3) = (3.7872, 0.03205, 0.07187) (4.251)

The sun’s hour angle, measured in hours, is computed by

H� = th − 12 + TE + λh (4.252)

where th is the hour of the day, λh the longitude (expressed in hours) and
TE the equation of time which can be written as

TE =
3∑

n=1

(cn cosnJ ′ + dn sinnJ ′) (4.253)
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with

(c1, c2, c3) = (0.0072,−0.0528,−0.0012)

(d1, d2, d3) = (−0.1229,−0.1565,−0.0041) (4.254)

Note that th must be given in GMT.
Taking account of absorption by the atmosphere, the direct solar radiation

incident on the ocean surface, is given by

Qdir = Qse
−τ (4.255)

The following form, proposed by Dogniaux (1984a,b), is considered for the
extinction factor

τ = moδRtL (4.256)

The optical air mass mo, Rayleigh’s optical thickness δR and Linke’s factor
tL are expressed as function of the solar altitude γ� in degrees, according to

δR = (0.9mo + 9.4)−1 (4.257)

tL = 0.021γ� + 3.55 (4.258)

mo = [sin γ� + 0.15(γ� + 3.885)−1.253]−1 (4.259)

The formulation, given by (4.257)–(4.259), has the advantage that it does
not diverge at low solar altitudes.

The direct component of solar radiation must be supplemented by the
diffuse sky radiation Qdif . Following Rosati & Miyakoda (1988) it is assumed
that one half of the scattered radiation reaches the ocean surface so that

Qdif =
(

(1− Aα)Qs −Qdir

)
/2 (4.260)

They considered the value of 0.09 for the water vapor and ozone absorption
coefficient Aα. The total radiation flux at the ocean surface under clear sky
conditions is then given by

Qcs = Qdir +Qdif =
1

2
Qs(e

−τ + 1− Aα) (4.261)

The clear sky value (4.261) must be corrected for cloud coverage and reflec-
tion by the ocean surface. The empirical formula, derived by Reed (1977),
appears to have a better agreement with observational data compared to
other formulations (Katsaros, 1990). The short-wave radiation flux at the
sea surface then finally takes the form

Qrad = Qcs(1− 0.62fc + 0.0019γ�,max)(1− As) (4.262)
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where γ�,max is the solar altitude at noon. A constant value of 0.06 is assumed
for the sea surface albedo As. Variations of the albedo as function of the
solar altitude and atmospheric transmittance have been tested using the
empirical fits derived by Payne (1972). No appreciable difference was found
with the formulation (4.262). The only parameter, which needs to be supplied
externally, is the fractional cloud cover fc also used in the expression (4.275)
for the long-wave radiation flux.

4.7 Surface boundary conditions

4.7.1 General form

Most of the surface boundary conditions discussed in this section are Neu-
mann type conditions for the surface fluxes and can be written into one of
the two following general forms

• A prescribed (upwards) surface flux Fψ
s

λψT
h3

∂ψ

∂s
= Fψ

s (4.263)

• A surface flux describing the transfer across the surface

λψT
h3

∂ψ

∂s
= Cψ

s (ψes − ψis) (4.264)

where Cs is the transfer rate (with the dimension of a velocity) and ψes,
ψis are the values of ψ just above and below the surface.

A second form of surface boundary condition is the Dirichlet type where
the value of ψ at the surface or at the first interior grid point is specified.
Examples are the conditions (4.281) for turbulence.

Note that when the model equations are given in depth-averaged mode
(Section 4.3.2), the surface boundary condition enters as an additional flux
(source or sink) term in the transport equations. It is obvious that in that
case only a Neumann flux conditions is allowed.

4.7.2 Currents

The surface condition for the horizontal current is as usual obtained by spec-
ifying the surface stress as function of the wind components

ρ0
νT
h3

(∂u
∂s
,
∂v

∂s

)
= (τs1, τs2) = ρaCdsW10(U10, V10) (4.265)
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where (U10, V10) are the components of the wind vector at a reference height
of 10 m, W10 = (U2

10 + V 2
10)

1/2 is the wind speed, ρa = 1.2 kg/m3 the air
density and Cds the surface drag coefficient discussed in Section 4.8. The
boundary condition for the transformed vertical velocity takes the simple
form

ω = 0 (4.266)

4.7.3 Temperature

The surface boundary condition for temperature can either be taken as a
Dirichlet condition in which case Ts is specified directly at (or near) the
surface or a Neumann condition in which case the surface flux of temperature
is given as

ρ0cp
h3

λT
∂T

∂s
= Qs (4.267)

where Qs is the downwards directed heat flux at the surface and cp the
specific heat of seawater at constant pressure. The net total heat flux into
the water column is composed of a term −Qnsol of all non-solar contributions
plus the radiative flux Qrad. Only the former contributes to the surface flux
of temperature, since solar radiance is absorbed within the water column.

The (upwards directed) non-solar heat flux has three components, i.e.

Qnsol = Qla +Qse +Qlw (4.268)

where Qla is the latent heat flux released by evaporation, Qse the sensible heat
flux due to the turbulent transport of temperature across the air/sea interface
and Qlw the net long-wave radiation emitted at the sea surface. The first
two terms are related to the turbulent fluxes of humidity and temperature

Qla = ρaLνCeW10(qs − qa) (4.269)

Qse = ρacpaChW10(Ts − Ta) (4.270)

where Ts, qs and Ta, qa are the temperature and specific humidity at respec-
tively the sea surface and a reference height, usually taken at 10 m, and

cpa = 1004.6(1 + 0.8375qa) J kg−1 (0C)−1 (4.271)

the specific heat of air at constant pressure. The latent heat of vaporization
is given as a function of the sea surface temperature

Lν = 2.5008× 106 − 2300Ts J/kg (4.272)
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The sea surface and air humidities qs and qa are calculated using

q =
εRe

Pa0 − (1− εR)e
(4.273)

where Pa is the atmospheric pressure (in mbar) and εR = 0.62197 the ratio of
molecular weight of dry water to dry air. The vapour pressure e is obtained
in mb from the empirical relation (Gill, 1982)

log10 e = log10RH +
0.7859 + 0.03477T

1 + 0.00412T
(4.274)

where RH is the relative humidity (between 0 and 1). In equations (4.273)
and (4.274) the humidity q, the vapour pressure e and the temperature T
(in 0C) either represent sea surface or atmospheric values at the reference
height. Note that a relative humidity of 100% is taken at the sea surface.

The long-wave radiation flux term is parameterised following Gill (1982):

Qlw = εsσrad(Ts + 273.15)4(0.39− 0.05e1/2a )(1− 0.6f 2
c ) (4.275)

where εs = 0.985 is the emissivity at the sea surface, σrad = 5.67 × 10−8 W
m−2 K−4 Stefan’s constant, fc the fractional cloud cover (between 0 and 1)
and ea the vapour pressure evaluated by (4.274).

The surface fluxes of momentum and heat involve the surface drag coef-
ficient Cds and two dimensionless parameters Ce, Ch sometimes referred as
the Dalton and Stanton number. Various empirical schemes for these trans-
fer coefficients have been presented in the literature (see e.g. Blanc, 1985;
Geernaert, 1990). A few formulations are available in the program. They are
further discussed in Section 4.8.

Implementation

The type of surface condition for temperature is selected with the switch
iopt temp sbc:

1: Neumann (flux) condition

2: Dirichlet condition at the first grid point below the surface

3: Dirichlet condition at the surface itself

4.7.4 Salinity

The surface salinity flux is determined using the formula given by Steinhorn
(1991):

ρ0
λT
h3

∂S

∂s
=
Ss(Evap −Rpr)

1− 0.001Ss
(4.276)
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where Evap = Qla/Lν and Rpr are the evaporation and precipitation rates
in kg m−2 s−1 and Ss the surface salinity in PSU. The evaluation of the
surface salinity flux requires the input of precipitation data as an additional
meteorological parameter.

Implementation

The switch iopt sal sbc enables (1) or disables (0) the surface flux condition
(4.276).

4.7.5 Turbulence

The surface boundary conditions for turbulence variables are derived by mak-
ing the “wall”- (or “log”-) layer approximation. The following assumptions
are made

1. The layer is neutrally stratified (N2 = 0).

2. The shear stress is taken as vertically uniform. Neglecting the Coriolis
force, taking the X-axis along the flow direction and using equation
(4.179) one has

u2?s =
√
τ 2s1 + τ 2s2 = −Su0

k2

ε

∂U

∂z
= constant (4.277)

3. The mixing length is proportional to the distance d from the “wall”
boundary as given by equation (4.212):

l = l2 = κds = κ(ζ − z + z0s) = κ
(
H(1− σ) + z0s

)
(4.278)

where κ = 0.4 is von Kármàn’s constant and z0s a surface roughness
length.

4. The velocity shear is given by

∂U

∂z
= −u?

l
= − u?

κds
(4.279)

Integration of this equation gives the familiar linear U versus log z
dependence.

5. Turbulence is assumed to be in equilibrium, i.e.

P = −u2?s
∂U

∂z
= ε = ε0

k3/2

κds
(4.280)



144 CHAPTER 4. PHYSICAL MODEL

From (4.277)–(4.280) the following Dirichlet type surface conditions are de-
rived for the k, ε and kl transport equations

k =
u2?s

S
1/2
u0

, ε =
u3?s
κds

, l = κds (4.281)

with ds defined through (4.278). The relation

ε0 = S
3/4
u0 (4.282)

can be readily obtained in addition to the previous relations.
The program allows to use Neumann type condition for k and ε as well.

They are given by

νk
h3

∂k

∂s
= cwu

3
?s (4.283)

νk
h3σε

∂ε

∂s
=

νk
h3σε

ε0k
3/2

κd2s
(4.284)

The first condition was proposed by Craig & Banner (1994) with cw ∼ 100
and a non-zero surface roughness to represent the energy input of breaking
surface waves. The second one, introduced by Burchard & Petersen (1999),
can be derived from the Dirichlet conditions and has, according to these au-
thors, a better numerical performance for applications with a coarse vertical
resolution. A modification of the flux condition for ε which takes account
of wave breaking, was considered by Burchard (2001) but is currently not
implemented in the code.

Implementation

The surface boundary condition for turbulence are selected by the following
switches:

iopt turb tke sbc Type of condition for k

1: Neumann condition (4.283)

2: Dirichlet condition (4.281)

iopt turb dis sbc Type of condition for ε

1: Neumann condition (4.284)

2: Dirichlet condition (4.281)
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4.7.6 Water column mode

In the water column approximation (Section 4.3.1), the surface slope and
elevations can be prescribed at the surface as the sum of a non-harmonic and
harmonic part

qe(t) = qe0(t) +
N∑
n=1

Anfn(t) cos
(
Vn(t) + un(t)− ϕn

)
(4.285)

where qe represents the external value of ∂ζ/∂x, ∂ζ/∂y or ζ, (fn, un) are the
nodal amplitude and phase factors, Vn(t) the astronomical phases at Green-
wich and (An, ϕn) the amplitudes and phases with respect to Greenwich10.

4.8 Surface drag and exchange coefficients

The values of Cds, CE and CH depend on conditions in the lower atmosphere
and are, in general, functions of W10, Ta, Ts, RH (relative humidity) and
Pa. Several (mainly empirical) formulations are implemented and can be
divided into neutral schemes, depending on wind speed only, and stratified
ones which take additionally account of at least the effect of the air minus
sea temperature difference.

4.8.1 Neutral formulations

The following formulations for Cds are implemented

0. Constant value. Default value is 0.0013.

1. Large & Pond (1981)

Cds = 0.0012 if W10 ≤ 11m/s

Cds = 10−3(0.49 + 0.065W10) if W10 > 11m/s (4.286)

2. Smith & Banke (1975)

Cds = 10−3(0.63 + 0.066W10) (4.287)

3. Geernaert et al. (1986)

Cds = 10−3(0.43 + 0.097W10) (4.288)

10Expression (4.285) is analogous to (4.354) applied at open boundaries.
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Table 4.7: Empirical parameters used in the Kondo (1975) formulations for
the neutral surface drag and exchange coefficients.

ad, bd, pd ae, be, ce, pe ah, bh, ch, ph
W10 < 2.2 0.0, 1.08, -0.15 0.0, 1.23, 0.0, -0.16 0.0, 1.185, 0.0, -0.157
2.2 ≤ W10 < 5 0.771, 0.0858, 1.0 0.969, 0.0521, 0.0, 1.0 0.927, 0.0546, 0.0, 1.0
5 ≤ W10 < 8 0.867, 0.0667, 1.0 1.18, 0.0, 0.0, 1.0 1.15, 0.01, 0.0, 1.0
8 ≤ W10 < 25 1.2, 0.025, 1.0 1.196, 0.008, -0.0004, 1.0 1.17, 0.0075, -0.00045, 1.0
25 ≤ W10 0.0, 0.073, 1.0 1.68, -0.016, 0.0, 1.0 1.652, -0.017, 0.0, 1.0

4. Kondo (1975)

Cds = 10−3(ad + bdW
pd
10 ) (4.289)

where ad, bd and pd are function of wind speed and given in Table 4.7.

5. Wu (1980)

Cds = 0.0012R0.15
w

log10Rw = 0.137W10 − 0.616 (4.290)

6. Charnock (1955) relation

z0sg/u
2
∗s = a

Cds =
( κ

ln(z0s/10)

)2
(4.291)

where z0s is the surface roughness length, u∗ the surface friction veloc-
ity and a=0.014 Charnock’s constant. Since u2∗s = CdsW

2
10, equation

(4.291) has to be solved by iteration.

Neutral values for Ce and Ch are obtained from one of the following
schemes.

0. Constant values. Default is 0.0013.

1. Large & Pond (1982)

Ce = 0.00115

Ch = 0.00113 if Ta < Ts

= 0.00066 if Ta ≥ Ts (4.292)
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2. Anderson & Smith (1981)

Ce = 10−3(0.55 + 0.083W10)

Ch = 0.00112 if Ta < Ts

= 0.00082 if Ta ≥ Ts (4.293)

3. Kondo (1975)

Ce = 10−3
(
ae + beW

pe
10 + ce(W10 − 8)2

)
Ch = 10−3

(
ah + bhW

ph
10 + ch(W10 − 8)2

)
(4.294)

where the coefficients ae, ah, be, bh, ce, ch and pe, ph are function of the
wind speed and given in Table 4.7.

4. Wu (1980)

Ce = Ch = 0.001R0.11
w

log10Rw = 0.137W10 − 0.616 (4.295)

4.8.2 Kondo’s stratified formulation

Kondo (1975) extended the neutral formulation (4.289), (4.294) for stratified
conditions. The method consists in multiplying the neutral values by a factor
depending on the air minus sea temperature difference. The procedure is as
follows

R0 = (Ts − Ta)/W 2
10 (4.296)

R = R0
|R0|

|R0|+ 0.01
(4.297)

In case of stable conditions (Ts < Ta)

f(R) = 0.1 + 0.03R + 0.9e4.8R if − 3.3 < R < 0

f(R) = 0 if R ≤ −3.3 (4.298)

Cds = Cdnf(R), Ce = Cenf(R), Ch = Chnf(R) (4.299)

For unstable conditions (Ts > Ta)

Cds = Cdn(1.0 + 0.47R1/2)

Ce = Cen(1.0 + 0.63R1/2)

Ch = Chn(1.0 + 0.63R1/2) (4.300)

where Cdn, Cen, Chn are the neutral values in the absence of stratification.
In principle one may choose any of the previous relations for the neutral
coefficients. It is however recommended to use the ones proposed by Kondo
(1975).
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4.8.3 Stratified case from Monin-Obukhov theory

The most general way, but also the most complex one, to include stratifica-
tion is based on the Monin-Obukhov similarity theory as described in e.g.
Geernaert (1990); Kantha & Clayson (2000a). Some details of the physical
theory are given here to understand how it is implemented in the program.

The surface values of the momentum, latent and sensible heat fluxes at the
air-sea interface depend on the turbulent structure of the lower atmosphere,
usually called the planetary boundary layer. It is generally assumed that the
fluxes of momentum, heat and specific humidity have nearly constant values
within this layer. Following Monin & Obukhov (1954) the structure of this
layer can be described by means of a velocity scale u∗ (friction velocity), a
temperature scale T∗ and a humidity scale q∗ defined by

u∗ = (〈u′w′〉2 + 〈v′w′〉2)1/2 (4.301)

u∗T∗ = −〈w′T ′〉 (4.302)

u∗q∗ = −〈w′q′〉 (4.303)

where (u′, v′, w′), T ′ and q′ are the turbulent fluctuations of the wind velocity,
temperature and humidity, and 〈 〉 denotes an ensemble average. The vertical
gradient of the wind speed U is written as the ratio of u∗ to a mixing length,
or

∂U

∂z
=
u∗
l

(4.304)

where z is the height above the sea surface. For neutral stratification one
has

l = κz (4.305)

Since l decreases or increases with respect to its neutral value, according as
the stratification is stable or unstable, equation (4.304) can be rewritten in
the more general form

∂U

∂z
=
u∗
κz
φm (4.306)

The dimensionless function φm describes the effect of stratification and is
smaller (or larger) than 1 for unstable (stable) stratification. In a similar
way, the gradients of temperature and relative humidity are given by

∂T

∂z
=
T∗
κz
φh (4.307)

∂q

∂z
=
q∗
κz
φq (4.308)
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The functions φm, φh and φq are expressed in terms of the dimensionless
height ξ = z/Lmo with the Monin-Obukhov length Lmo defined by

L−1mo = − gκ

Tvu3∗
(〈w′T ′〉+ 0.61Tk〈w′q′〉) (4.309)

where Tk represents the temperature in degrees Kelvin and the virtual tem-
perature Tv is given by

Tv = Tk(1 + 0.61q) (4.310)

Note that ξ > 0 for stable and ξ < 0 for unstable stratification. Based upon
atmospheric measurements (Businger et al., 1971) the following parameteri-
sations are adopted

φm = (1− αξ)−1/4 for ξ < 0
φm = 1 + βξ for ξ > 0

(4.311)

and
φh = φ2

m for ξ < 0
φh = φm for ξ > 0

(4.312)

with α = 16, β = 5, while it is further assumed that φq = φh . Integrating
(4.306)–(4.308) one obtains

U =
u∗
κ

(ln
z

z0U
− ψm) (4.313)

T − Ts =
T∗
κ

(ln
z

z0T
− ψh) (4.314)

q − qs =
q∗
κ

(ln
z

z0q
− ψh) (4.315)

where

ψm =

∫ ξ

0

1− φm(ξ)

ξ
dξ (4.316)

ψh =

∫ ξ

0

1− φh(ξ)
ξ

dξ (4.317)

The subscript s indicates a quantity evaluated at the sea surface. Expressions
(4.313)–(4.315) are valid for z � z0U , z0T , z0q while it is further assumed
that U � Us. The roughness lengths z0U , z0T and z0q prevent the quantities
becoming too large near the surface. Evaluating the integrals (4.316)–(4.317)
one has

ψm = 2 ln(1 + φ−1m ) + ln(1 + φ−2m )− 2 arctan(φ−1m ) + π
2
− 3 ln 2 for ξ < 0

ψm = 1− φm for ξ > 0
(4.318)
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and
ψh = 2 ln(1 + φ−1h )− 2 ln 2 for ξ < 0
ψh = 1− φh for ξ > 0

(4.319)

Parameterisations for u∗, T∗, q∗ are given by rewriting (4.313)–(4.315):

u2∗ = κ2(ln
z

z0U
− ψm)−2U2 = CdsU

2 (4.320)

u∗T∗ = κ2(ln
z

z0U
−ψm)−1(ln

z

z0T
−ψh)−1U(T − Ts) = ChU(T − Ts) (4.321)

u∗q∗ = κ2(ln
z

z0U
− ψm)−1(ln

z

z0q
− ψh)−1U(q − qs) = CeU(q − qs) (4.322)

where Cds, Ch and Ce are the drag coefficient, the Stanton and the Dalton
numbers. The z-dependence of the coefficients is usually eliminated by eval-
uating them at the standard height z = za = 10 m. Suitable expressions are
required for z0U , z0T , z0q. Parameterisations exist for the roughness length
as function of the wave state (e.g. Janssen, 1991). However, since little infor-
mation is available concerning the form of z0T and z0q, the simpler approach
described in Geernaert (1990) is used. This consists in defining a drag co-
efficient Cdn valid for a neutral stratification. In analogy with (4.320) one
has

U = C
−1/2
dn u∗n =

u∗n
κ

ln
z

z0n
(4.323)

where z0n is the value of z0U for neutral conditions. Eliminating z between
(4.320) and (4.323) yields the following relation between Cds and Cdn:

Cds = [C
−1/2
dn + (ln

z0n
z0U
− ψm)/κ]−2 (4.324)

Following Charnock (1955) one further assumes that the roughness length
scales with the wind stress or

z0U = au2∗/g (4.325)

so that
z0U
z0n

=
u2∗
u2∗n

=
Cds
Cdn

(4.326)

Hence
Cds = [C

−1/2
dn + (ln(Cdn/Cds)− ψm)/κ]−2 (4.327)

The neutral Stanton and Dalton numbers are defined in a similar way

Chn = κ2(ln
z

z0n
ln

z

z0T
)−1 (4.328)
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Cen = κ2(ln
z

z0n
ln

z

z0q
)−1 (4.329)

Expressions for Ch and Ce in terms of their neutral counterparts are then
obtained by combining (4.328)–(4.329) with (4.321)–(4.322) (taking z0U '
z0n for simplicity) and (4.323). This gives

Ch = Chn[1− (ψmC
1/2
dn + ψhChnC

−1/2
dn )/κ+ Chnψmψh/κ

2]−1 (4.330)

Ce = Cen[1− (ψmC
1/2
dn + ψhCenC

−1/2
dn )/κ+ Cenψmψh/κ

2]−1 (4.331)

The neutral coefficients are obtained from one of the formulations given in
Section 4.8.1.

Since the functions ψm and ψh depend on the dimensionless height ξ, a
further equation needs to be added. Eliminating u∗, T∗ and q∗ in (4.309)
after substituting (4.302)–(4.303), by using (4.320)–(4.322) and evaluating
at the reference height, one has

ξ =
gκza
TvW 2

10

Ch(Ta − Ts) + 0.61TkCe(qa − qs)
(Cds)3/2

(4.332)

In summary, the coefficients Cds, Ch and Ce are obtained by solving the
system consisting of the four equations (4.327), (4.330), (4.331) and (4.332)
using an iteration scheme. Input parameters are the wind speed W10, the air
temperature Ta, the sea surface temperature Ts, the relative humidity RH
and the atmospheric pressure pa . The last two are needed to evaluate qa, qs
through (4.273)–(4.274).

The various schemes introduced in this section are compared in Figure 4.8.
The following observations can be made

• The Smith & Banke (1975) and Charnock (1955) formulations are
highly similar. Larger diferences between the different schemes, up
to a factor 2, are seen for the surface drag coefficient in the case of high
wind speeds.

• Stratification effects measured by the air-sea temperature difference
are important at wind speeds below 10 m/s. A significant decrease
of the exchange coefficients is observed in case of a stable (Ta > Ts)
stratification, whereas the cofficients increase in the unstable (Ta < Ts)
case.

• The Kondo and Monin-Obukhov formulations are qualitatively similar.

• The effect of relative humidity is less significant compared to the one
produced by stratification.
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(a)

(d)(c)

(b)

Figure 4.8: (a) Surface drag coefficient Cds as function of wind speed accor-
ding to (4.286) (solid), (4.287) (dots), (4.288) (dashes), (4.289) (dash-dots),
(4.290) (dash and 3 dots), (4.291) (long dashes). (b) Surface exchange coeffi-
cient Ce as function of wind speed according to the Kondo (1975) formulation
and ∆T=Ta−Ts=00C (solid), -50C (dots), -2.50C (dashes), 2.50C (dash-dots),
50C (dash and 3 dots). (c) Surface exchange coefficient Ce as function of wind
speed according to Monin-Obukhov theory, using RH=75%, Ts=120C and
∆T=Ta − Ts=00C (solid), -50C (dots), -2.50C (dashes), 2.50C (dash-dots),
50C (dash and 3 dots). (d) Surface exchange coefficient Ce as function of
wind speed according to Monin-Obukhov theory, using Ta=Ts=120C and
RH=100% (solid), 90% (dots), 80% (dashes), 70% (dash-dots), 60% (dash
and 3 dots), 50% (long dashes).
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Implementation

Evaluation of the surface drag and exchange coefficients is selected with the
following switches

iopt sflux cds Formulation for the neutral surface drag coefficient Cds.

0 : constant value as given by the parameter cds cst

1 : equation (4.286) from Large & Pond (1981)

2 : equation (4.287) from Smith & Banke (1975)

3 : equation (4.288) from Geernaert et al. (1986)

4 : equation (4.289) from Kondo (1975)

5 : equation (4.290) from Wu (1980)

6 : equation (4.291) from Charnock (1955)

iopt sflux cehs Formulation for the neutral surface (heat) exchange coeffi-
cients Ce, Ch.

0 : constant value as given by the parameter ces cst or chs cst

1 : equation (4.292) from Large & Pond (1982)

2 : equation (4.293) from Anderson & Smith (1981)

3 : equation (4.294 from Kondo (1975)

4 : equation (4.295) from Wu (1980)

iopt sflux strat Selects dependence of the surface drag and exchange coeffi-
cients on atmospheric stratification effects.

0 : no dependence

1 : using the Kondo (1975) parameterisation (Section 4.8.2)

2 : using Monin-Obukhov similarity theory (Section 4.8.3)

4.9 Bottom boundary conditions

4.9.1 General form

In analogy with Section 4.7.1 most of the bottom boundary conditions are
flux (Neumann type) conditions and can be written into one of the two
following general forms
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• A prescribed (upwards) bottom flux Fψ
b

λψT
h3

∂ψ

∂s
= Fψ

b (4.333)

• A bottom flux describing the transfer across the sea bed

λψT
h3

∂ψ

∂s
= Cψ

b (ψib − ψeb) (4.334)

where Cψ
b is the transfer rate (with the dimension of a velocity) and

ψeb , ψ
i
b are the values of ψ just below and above the sea bed.

For example, the bottom conditions (4.336) and (4.340) for u and v are
of the form (4.334) with

Cu
b = Cv

b = Cdb(u
2
b + v2b )

1/2 , ueb = veb = 0 (4.335)

An alternative form is a Dirichlet boundary condition where the value of
ψ at the bottom or the first interior point is specified. Examples are the
conditions (4.351) for turbulence.

Note that when the model equations are given in depth-averaged mode
(Section 4.3.2), the bottom boundary condition enters as an additional flux
(source or sink) term in the transport equations. It is obvious that in that
case only a Neumann flux condition is allowed.

4.9.2 Currents

A slip boundary condition is applied for the horizontal current at the bottom
which takes the form

νT
h3

(∂u
∂s
,
∂v

∂s

)
= (τb1, τb2) (4.336)

The following formulations have been implemented

• zero stress condition
(τb1, τb2) = (0, 0) (4.337)

• linear friction law, either in 3-D as in 2-D mode

(τb1, τb2) = klin(ub, vb) (4.338)

or
(τb1, τb2) = klin(u, v) (4.339)
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• quadratic friction law, either in 3-D as in 2-D mode

(τb1, τb2) = Cdb(u
2
b + v2b )

1/2(ub, vb) (4.340)

or
(τb1, τb2) = Cdb(u

2 + v2)1/2(u, v) (4.341)

where the bottom currents (ub, vb) are evaluated at the grid point nearest
to the bottom and (u,v) are the depth-mean currents. A constant value is
taken for the linear friction coefficient klin.

The quadratic law for the 3-D case is obtained using the boundary layer
approximation of a vertically uniform shear stress (see equation 4.349, yield-
ing a logarithmic profile for the current

|u(z)| = u∗b
κ

ln(
z∗
z0

) (4.342)

where u2∗b = τb, z∗ the height above the sea bed and z0 the bottom roughness
length. The quadratic bottom drag coefficient can then be expressed as a
function of the roughness length z0 and the location of the bottom cell. This
gives

Cdb =
(
κ/ ln(zr/z0)

)2
(4.343)

where zr is a reference height taken at the grid centre of the bottom cell.
The value of z0 which may vary in the horizontal directions, depends on
the geometry and composition of the seabed. Values of z0, measured from
logarithmic current profiles can be found in Heathershaw (1981); Soulsby
(1983, 1997) for various bed type forms.

When COHERENS is used in 2-D mode, the drag coefficient is determined
by averaging (4.342) over the water depth. Assuming z0 � H, one obtains

Cdb =

[
κ/ ln

(
H/(ez0)

)]2
(4.344)

Note that in depth-averaged (2-D) mode, the only allowed formulations for
the bottom stress are (4.339), (4.341) and (4.344).

The log-layer approximation is only valid if zb � z0. This may create a
problem in case the grid cell is drying and zb → z0, Cdb →∞. To prevent too
large drag coefficients, a lower limit has been imposed of the form zb/z0 >
ξmin. In the previous versions this limit was set internally to a value of
1.5. In the current version ξmin is user-defined. Default value is 2 yielding a
maximum of 0.333 for Cdb.

In analogy with the surface condition (4.266) the bottom value of the
transformed vertical velocity equals zero, i.e.

ω = 0 (4.345)
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Implementation

Evaluation of the bottom stress is controlled by the following switches

iopt bstres form Type of bottom stress formulation

0: Zero bottom stress

1: Linear friction law

2: Quadratic friction law

iopt bstres nodim Type of currents used in the bottom stress formulation

2: Depth mean currents

3: 3-D current at the bottom grid cell

iopt bstres drag Type of formulation for Cdb

0: Set to zero

1: Constant prescribed value

2: Prescribed horizontally non-uniform value

3: Using (4.343) or (4.344) and a constant roughness length

4: Using (4.343) or (4.344) and a spatially dependent rough-
ness length

4.9.3 Temperature and salinity

The bottom boundary conditions for temperature and salinity are obtained
by considering a zero flux normal to the seabed:

λT
h3

∂T

∂s
= 0 ,

λT
h3

∂S

∂s
= 0 (4.346)

A similar assumption is applied for the absorption term in the temperature
equation (4.47) where solar radiance I is set to zero at the sea bottom.
It is remarked that the non-allowance of any heat exchange at the bottom
interface may not be realistic but is only imposed in the absence of a useful
parameterisation which takes account of a bottom exchange (e.g. release of
geothermal energy).
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4.9.4 Turbulence

The bottom boundary conditions are obtained using the same boundary layer
assumptions as for the surface case. Equations (4.277)–(4.280) are replaced
by equations (4.347)–(4.350) below. The bottom friction velocity is defined
by

u2?b =
√
τ 2b1 + τ 2b2 = Su0

k2

ε

∂U

∂z
= constant (4.347)

The mixing length is proportional to the distance db from the “wall” boun-
dary as given by equation (4.212):

l = l1 = κdb = κ(h+ z + z0b) = κ
(
Hσ + z0b

)
(4.348)

where is z0b a bottom roughness length.

∂U

∂z
=
u?b
l

=
u?b
κdb

(4.349)

P = u2?b
∂U

∂z
= ε = ε0

k3/2

κdb
(4.350)

The following Dirichlet conditions are derived from the previous equations

k =
u2?b

S
1/2
u0

, ε =
u3?b
κdb

, l = κdb (4.351)

In analogy with the surface case the conditions for k and ε can be replaced
by conditions for the bottom flux

νk
h3

∂k

∂s
= 0 (4.352)

νk
h3σε

∂ε

∂s
=

νk
h3σε

ε0k
3/2

κd2b
(4.353)

The first condition states that there is no energy flux across the bottom.

Implementation

Bottom boundary condition for turbulence are selected by the following
switches:

iopt turb tke bbc Type of condition for k

1: Neumann condition (4.352)
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2: Dirichlet condition (4.351)

iopt turb dis bbc Type of condition for ε

1: Neumann condition (4.353)

2: Dirichlet condition (4.351)

4.10 Lateral boundary conditions

4.10.1 Open boundary conditions for the 2-D mode

The model uses a Arakawa C-grid (see Section 5.2). The 2-D mode equations
contain the three unknown variables U , V and ζ. The surface elevation
is obtained from the continuity equation which does not explicitly require
knowledge of ζ at the open boundaries. This means that open boundary
conditions only need to be supplied for the transports U and V . However, a
robust scheme needs to take account of the information entering or leaving
the domain which involves all three parameters and should therefore include
ζ as well.

The implemented schemes can be divided in four categories11:

1. Conditions without externally imposed values for transports and ele-
vations (0,1,2,5,6,7,10,13).

2. Conditions with imposed elevations (3,9,12). An “external” value for
the transport is obtained by solving a local solution of the momentum
equations.

3. Conditions with imposed transports (4).

4. Conditions with specified transports and elevations (8,11).

External values (U e, V e, ζe) are expressed as the sum of a non-harmonic and
an harmonic part

ψe(ξ1, ξ2, t) = ψe0(ξ1, ξ2, t) +
N∑
n=1

An(ξ1, ξ2)fn(t) cos
(
Vn(t) +un(t)−ϕn(ξ1, ξ2)

)
(4.354)

where ψe0 represents the non-harmonic part, fn, un are the nodal amplitude
and phase factors, Vn(t) the astronomical phases at Greenwich and An, ϕn
the space-dependent amplitudes and phases with respect to Greenwich at

11The numbers in parentheses refer to the numbering of the descriptions below.
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the open boundaries. The Greenwich phases and nodal factors are space-
independent and obtained as function of time using the theory discussed in
Section 4.5. The amplitudes An and phases ϕn are constant in time but non-
uniform in space and needed to determine the harmonic input at the open
boundaries. The function ψe0 depends on space and time. Values for An, ϕn
and ψe0 need to be supplied by the user.

Variations in atmospheric pressure cause a displacement of the sea level.
On the other hand, when an external surface elevation is specified, usually in
the form of an harmonic expansion, the harmonic amplitudes are obtained
with respect to a reference atmospheric pressure Pref . To take account of
this “inverse barometer” an (optionally) correction term is added to ζe, i.e.

ζe = expression (4.354) + (Pref − Pa)/(gρ0) (4.355)

A relaxation condition can (optionally) be applied for all exterior 2-D
data (transports and elevation) in case the model is set up with the default
initial conditions (zero transports and elevations). In that case the exterior
data function ψe(ξ1, ξ2, t) is multiplied by the factor

αr(t) = min((t− t0)/Tr, 1) (4.356)

where Tr is the relaxation period and t0 the initial time. The method avoids
the development of discontinuities during the initial propagation of (e.g.) a
tidal wave into the domain.

All available schemes for 2-D open boundary conditions are briefly des-
cribed below. Details are not given but can be found in the appropriate
references. Comparison of different schemes are discussed in e.g. Palma &
Matano (1998); Jensen (1998); Røed & Cooper (1987). Note that the con-
ditions are applied after solving the 2-D mode equations for U , V , ζ at all
interior points.

The following notations are adopted

• ± or∓: upper (lower) sign applies at western/southern (eastern/northern)
boundaries

• the gravity wave speed c is defined by c =
√
gH

• s equals 1 if ζe is defined at an exterior node or 2 if ζe is defined at the
open boundary (U- or V-) node

0. Clamped.

The transports are uniform in time and determined by the initial con-
ditions.

∂U

∂t
= 0 ,

∂V

∂t
= 0 (4.357)
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This is the default condition.

1. Zero slope.

The 2-D momentum equations are solved without surface slope, advec-
tion, horizontal diffusion, pressure gradient and astronomical force.

∂U

∂t
= fV +HF t

1 + τs1− τb1 ,
∂V

∂t
= −fU +HF t

2 + τs2− τb2 (4.358)

2. Zero volume flux.

This is a reflective boundary condition whereby the transport is set
equal to its nearest interior value.

∂U

∂ξ1
= 0 ,

∂V

∂ξ2
= 0 (4.359)

3. Specified elevation.

The 2-D momentum equations are solved without advection, horizontal
diffusion, atmospheric and baroclinic pressure gradient.

∂U

∂t
= − c

2

h1

∂ζ

∂ξ1
+ fV +HF t

1 + τs1 − τb1

∂V

∂t
= − c

2

h2

∂ζ

∂ξ2
− fU +HF t

2 + τs2 − τb2 (4.360)

The slope term is calculated by the spatial difference of the specified ζ
value, either at the open boundary or outside the model grid, and its
nearest interior value. The solutions are called “local” since all other
horizontal gradient are suppressed. This condition is the easiest to use
if ζ is the only available data parameter.

4. Specified transport.
U = U e , V = V e (4.361)

This is the simplest and most appropriate condition to be used at river
boundaries.

5. Radiation condition using the shallow water wave speed.

Several types of radiation conditions, which allow the propagation of
waves approaching the open boundary, are implemented. Oblique waves
are not considered so that a normal incidence on the boundary is as-
sumed. The methods use a Sommerfeld type of equation of the form

∂ψ

∂t
∓ C

hi

∂ψ

∂ξi
= 0 (4.362)
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where C is an appropriate wave speed. The first condition uses the
surface gravity wave speed for shallow water

∂U

∂t
∓ c

h1

∂U

∂ξ1
= 0 ,

∂V

∂t
∓ c

h2

∂V

∂ξ2
= 0 (4.363)

6. Orlanski (1976) condition.

This is the most popular radiation scheme using

C = cr = hi
∂ψ/∂t

∂ψ/∂ξi
(4.364)

so that

∂U

∂t
∓ cr
h1

∂U

∂ξ1
= 0 , cr = ±∂U

∂t

/( 1

h1

∂U

∂ξ1

)
∂V

∂t
∓ cr
h2

∂V

∂ξ2
= 0 , cr = ±∂V

∂t

/( 1

h2

∂V

∂ξ2

)
(4.365)

The numerical implementation (further discussed in Section 5.3.16.1)
involves the values from two previous time steps and at the nearest two
interior grid points.

7. Camerlengo & O’Brien (1980).

The scheme is a mixture of the clamped and zero flux condition and
can be considered as a simplified case of the Orlanski condition. Details
are given in Section 5.3.16.1.

8. Flather (1976) with specified elevation and transport.

This is based on (4.363) combined with the continuity equation using
only the volume flux normal to the open boundary. The condition then
requires that U ± cζ or V ± cζ is continuous across the boundary or

U = U e ∓ 1

2
sc(ζ − ζe) , V = V e ∓ 1

2
sc(ζ − ζe) (4.366)

9. Flather (1976) with specified elevation.

The formulation is the same as (4.366) with U e, V e replaced by the
local solutions UL, V L obtained by solving (4.360)

U = UL ∓ 1

2
sc(ζ − ζe) , V = V L ∓ 1

2
sc(ζ − ζe) (4.367)
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10. Røed & Smedstad (1984).

The condition is the same as Flather’s condition but with all specified
exterior values replaced by local solutions

U = UL ∓ c(ζ − ζL) , V = V L ∓ c(ζ − ζL) (4.368)

where

∂ζL

∂t
= − 1

h1h2

∂

∂ξ2
(h1V ) ,

∂ζL

∂t
= − 1

h1h2

∂

∂ξ1
(h2U) (4.369)

and UL, V L are obtained from (4.360) using ζL.

11. Characteristic method with specified elevation and transport.

The method is perhaps the most robust, but also the most complex one.
The scheme is based on the theory of characteristics. The principle is
to determine which information propagates into or out of the domain.
The former is calculated using external data, the latter from the model
equations. The method is discussed in Hedstrom (1979); Hirsch (1990)
and applied in modified form to a barotropic ocean model by Røed &
Cooper (1987).

The characteristic variables are defined by

Ru
± = U ± cζ or Rv

± = V ± cζ (4.370)

At a western (eastern) boundary Ru
− (Ru

+) is the outgoing and Ru
+ (Ru

−)
the incoming characteristic. Let Ru

i = U ± cζ, Ru
o = U ∓ cζ denote the

incoming and outgoing characteristics at a western or eastern boundary
and Rv

i = V ± cζ, Rv
o = V ∓ cζ their counterparts at a southern

or northern boundary. The outgoing characteristics are obtained by
solving

∂Ru
o

∂t
∓ c

h1

∂Ru
o

∂ξ1
= ± c

h1h2

(
∂

∂ξ2
(h1V ) +

∂h2
∂ξ1

U

)
+ fV +HF t

1 + τs1− τb1
(4.371)

and

∂Rv
o

∂t
∓ c

h2

∂Rv
o

∂ξ2
= ± c

h1h2

(
∂

∂ξ1
(h2U) +

∂h1
∂ξ2

V

)
− fU +HF t

2 + τs2− τb2
(4.372)

The equations are obtained by adding the continuity equation (4.85),
multiplied by ∓c, to the two momentum equations (4.86)–(4.87), where
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(for convenience) the advective and horizontal diffusion terms, the baro-
clinic and atmospheric pressure gradient are neglected. These equations
are solved using values of the involved parameters evaluated inside the
domain.

The incoming characteristic is prescribed by

Ru
i = U e ± cζe , Rv

i = V e ± cζe (4.373)

The transports are then obtained by

U =
1

2
(Ru

i +Ru
o ) , V =

1

2
(Rv

i +Rv
o) (4.374)

12. Characteristic method with specified elevation.

The method is as previous with U e, V e replaced by the local solution
UL, V L from (4.360).

13. Characteristic method using a zero normal gradient.

Following Røed & Cooper (1987) the incoming characteristic is, in
the absence of available data, obtained from (4.371) or (4.372) with
∂Ru

i /∂ξ1 = 0 or ∂Rv
i /∂ξ2 = 0. This gives

∂Ru
i

∂t
= ∓ c

h1h2

(
∂

∂ξ2
(h1V ) +

∂h2
∂ξ1

U

)
+ fV +HF t

1 + τs1 − τb1 (4.375)

∂Rv
i

∂t
= ∓ c

h1h2

(
∂

∂ξ1
(h2U) +

∂h1
∂ξ2

V

)
− fU +HF t

2 + τs2 − τb2 (4.376)

4.10.2 Open boundary conditions for the 3-D mode

4.10.2.1 baroclinic currents

Since U and V are obtained from the 2-D open boundary conditions, only
their baroclinic parts δu = U−u/H and δv = V −v/H need to be determined.
The following conditions can be selected

0. Zero gradient.

1

h1

∂

∂ξ1
(h2h3δu) = 0 ,

1

h2

∂

∂ξ2
(h1h3δv) = 0 (4.377)

This is the default condition.
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1. Specified external profile.

δu = δue , δv = δve (4.378)

2. Second order gradient condition. In case of ragged open boundaries the
(first order) zero gradient condition may yield spurious discontinuities
of the vertical current at the first interior node. The effect is reduced
when using the second order condition

1

h1

∂

∂ξ1

[ 1

h1h2

∂

∂ξ1
(h2h3δu)

]
= 0 ,

1

h2

∂

∂ξ2

[ 1

h1h2

∂

∂ξ2
(h1h3δv)

]
= 0

(4.379)
at respectively U- and V-node open boundaries.

3. Local solution. The equation is derived from the 3-D and 2-D momen-
tum equations without advection and horizontal diffusion:

1

h3

∂

∂t
(h3δu)− 2Ω sinφδv = F b

1 −
F b
1

H
+

1

h3

∂

∂s

(νT
h3

∂δu

∂s

)
+
τb1 − τs1

H
(4.380)

at U-nodes and

1

h3

∂

∂t
(h3δv) + 2Ω sinφδu = F b

2 −
F b
2

H
+

1

h3

∂

∂s

(νT
h3

∂δv

∂s

)
+
τb2 − τs2

H
(4.381)

at V-node open boundaries. The diffusive fluxes at the surface and
bottom are determined by respectively (4.265) and (4.336) with u, v,
replaced by δu, δv.

4. Radiation condition using the baroclinic wave speed.

∂δu

∂t
∓ ci

1

h1

∂δu

∂ξ1
= 0 ,

∂δv

∂t
∓ ci

1

h2

∂δv

∂ξ2
= 0 (4.382)

The baroclinic wave speed ci is generally unknown and has to be spec-
ified by the user.

5. Orlanski condition.

∂δu

∂t
∓ cr

1

h1

∂δu

∂ξ1
= 0 , cr = ±∂δu

∂t
/

(
h1
∂δu

∂ξ1

)
∂δv

∂t
∓ cr

1

h2

∂δv

∂ξ2
= 0 , cr = ±∂δv

∂t
/

(
h2
∂δv

∂ξ2

)
(4.383)
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4.10.2.2 3-D scalars

Open boundary conditions are needed for calculation of the horizontal ad-
vective fluxes inside the domain.

0. Zero gradient.

1

h1

∂

∂ξ1
(h2h3ψ) = 0 ,

1

h2

∂

∂ξ2
(h1h3ψ) = 0 (4.384)

This is the default condition.

1. Specified external profile.
ψ = ψe (4.385)

2. Radiation condition using the baroclinic wave speed.

∂ψ

∂t
∓ ci

1

h1

∂ψ

∂ξ1
= 0 ,

∂ψ

∂t
∓ ci

1

h2

∂ψ

∂ξ2
= 0 (4.386)

The baroclinic wave speed ci is generally unknown and has to be spec-
ified by the user.

3. Orlanski condition.

∂ψ

∂t
∓ cr

1

h1

∂ψ

∂ξ1
= 0 , cr = ±∂ψ

∂t
/

(
h1
∂ψ

∂ξ1

)
∂ψ

∂t
∓ cr

1

h2

∂ψ

∂ξ2
= 0 , cr = ±∂ψ

∂t
/

(
h2
∂ψ

∂ξ2

)
(4.387)

4.10.2.3 turbulence variables

Advection of turbulence is considered of minor importance and has been
disabled by default. The only available open boundary condition for k, ε or
kl therefore consists of a zero gradient condition.

4.10.3 Relaxation conditions

A known problem with open boundary conditions is that the imposed value
of a quantity at the open boundary is not always compatible with its value
calculated by the model inside. For example, the thermocline depth obtained
from an imposed vertical profile of temperature may be different from the
one calculated by the model just inside the domain, creating unrealistic dis-
continuities. A known solution is the creation of a sponge layer near the open
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boundaries where the calculated interior solution is allowed to relax towards
its value imposed at the open boundary.

The method implemented in the program is the flow relaxation scheme
proposed by Martinsen & Engedahl (1987). A relaxation zone is defined near
the open boundary where the value of a model quantity ψ is written as

ψi = αψe + (1− α)ψ̃i (4.388)

where ψe is the open boundary value, ψ̃i the calculated interior value, prior
to relaxation, and α a weighting factor which varies between 1 at the open
boundary and 0 at the inner edge of the relaxation zone. Martinsen & En-
gedahl (1987) showed for a simplified case that the procedure is equivalent
to add a relaxation term α(ψ−ψe)/∆t/(1−α) to the right hand side of the
transport equation where ∆t is the model time step. In this way, ψ relaxes
to its open boundary value if α→ 1 and to the internal solution if α→ 0.

The method can be applied in the program for temperature, salinity and
baroclinic currents, but is not implemented for the 2-D mode. The following
interpolation schemes can be selected

1. linear

α = 1− d

D
(4.389)

2. quadratic

α =
(

1− d

D

)2
(4.390)

3. hyperbolic

α = 1− tanh
( d

2∆h

)
(4.391)

where d is the distance to the boundary, D the width of the relaxation
zone and ∆h the grid spacing. Note that the interpolation assumes a
uniform grid spacing within the relaxation zone.

4.10.4 Coastal boundaries

At coastal boundaries currents and fluxes of of scalars are set to zero, or

U = 0 , δu = 0 , uψ = 0 (4.392)

at western and eastern boundaries, and

V = 0 , δv = 0 , vψ = 0 (4.393)

at southern and northern boundaries.
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4.11 Initial conditions

The default initial conditions are

• 2-D hydrodynamics

U = 0, V = 0, ζ = 0 (4.394)

• 3-D hydrodynamics
u = v = 0 (4.395)

• scalars
T = Tref , S = Sref (4.396)

where Tref , Sref are uniform values selected by the user. These are also
the values taken over time if iopt temp=0 or iopt sal=0.

• turbulence
k = 10−6 J/kg (4.397)

for turbulent energy while l is obtained from one of the mixing length
prescriptions given in Section 4.4.3.5 and ε from (4.203).

Although the initial conditions for turbulence cannot be considered as re-
alistic, they are of lesser importance since turbulence is assumed to be in
quasi-equilibrium and adjusts itself rapidly to changes in the forcing condi-
tions, given by the vertical current shear and stratification. It is clear that
realistic initial conditions cannot be given in general. In practice, they need
to be obtained by the user.

4.12 Harmonic analysis

4.12.1 Residuals, amplitudes and phases

The program offers the possibility to apply an harmonic analysis on a given
number of user-defined quantities. The method is closely related to the one
described in Godin (1972). An harmonic expansion approximates a function
F (ξ1, ξ2, σ, t) by a series of the form

F (ξ1, ξ2, σ, t) = a0 +

Nh∑
n=1

an cosωn(t− tc) +

Nh∑
n=1

bn sinωn(t− tc) (4.398)

where a0, an and bn are spatially dependent parameters obtained with an
optimisation procedure, ωn are a series of user-defined frequencies, Nh the
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number of harmonics in the analysis, tc a “central” time and t the time
since the start of the simulation. The procedure uses a least-squares fitting.
Firstly, the time tc and a period T for the analysis, given by an even number
of time steps12, i.e. T = 2M∆t, are defined. Secondly, the program evaluates
the values of F at times tc + k∆t with −M ≤ k ≤M , denoted by

Fk = F (ξ1, ξ2, σ, tc + k∆t) (4.399)

The harmonic parameters a0, an and bn are then determined by minimising
the quantity

R =
M∑

k=−M

[Fk − a0 −
Nh∑
n=1

an cos(ωnk∆t)−
Nh∑
n=1

bn sin(ωnk∆t)]2 (4.400)

Setting the first derivatives of R with respect to a0, am and bm (1 ≤ m ≤ Nh)
equal to zero yields the following set of 2Nh + 1 equations

M∑
k=−M

[Fk − a0 −
Nh∑
n=1

an cos(ωnk∆t)−
Nh∑
n=1

bn sin(ωnk∆t)] = 0 (4.401)

M∑
k=−M

[Fk − a0 −
Nh∑
n=1

an cos(ωnk∆t)−
Nh∑
n=1

bn sin(ωnk∆t)] cos(ωmk∆t) = 0

(4.402)
M∑

k=−M

[Fk − a0 −
Nh∑
n=1

an cos(ωnk∆t)−
Nh∑
n=1

bn sin(ωnk∆t)] sin(ωmk∆t) = 0

(4.403)
with 1 ≤ m ≤ Nh. The system can be simplified with the aid of known sum-
mation rules for trigonometric functions (see Gradshteyn & Ryzhik, 1981).
The final result can be written as

Nh∑
n=1

Xmnan = Rm (4.404)

Nh∑
n=1

Ymnbn = Sm (4.405)

a0 =
1

2M + 1

[ M∑
k=−M

Fk −
Nh∑
n=1

an sin(
2M + 1

2
ωn∆t) csc(

ωn∆t

2
)
]

(4.406)

12Note that ∆t equals the time step for the 3-D mode calculations.
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where

Xmn =
1

2
sin
(2M + 1

2
(ωm + ωn)∆t

)
csc
(∆t

2
(ωm + ωn)

)
+

1

2
sin
(2M + 1

2
(ωm − ωn)∆t) csc

(∆t

2
(ωm − ωn)

)
− 1

2M + 1
sin(

2M + 1

2
ωm∆t) csc(

ωm∆t

2
) sin(

2M + 1

2
ωn∆t) csc(

ωn∆t

2
)

(4.407)

Ymn =
1

2
sin
(2M + 1

2
(ωm − ωn)∆t

)
csc
(∆t

2
(ωm − ωn)

)
−1

2
sin
(2M + 1

2
(ωm + ωn)∆t

)
csc
(∆t

2
(ωm + ωn)

)
(4.408)

Rm =
M∑

k=−M

Fk cos(ωmk∆t)− 1

2M + 1
sin(

2M + 1

2
ωm∆t) csc(

ωm∆t

2
)

M∑
k=−M

Fk

(4.409)

Sm =
M∑

k=−M

Fk sin(ωmk∆t) (4.410)

The following replacements need to be made at singular points of the csc
(cosecans) functions:

sin
(2M + 1

2
ω∗∆t

)
csc
(ω∗∆t

2

)
→ 2M + 1 if mod(ω∗∆t, 2π) = 0 (4.411)

where ω∗ equals either ωm , ωn , ωm + ωn , ωm − ωn. The matrices X and Y
are symmetric and depend only on the values of the frequencies, the time
step and the analysed period and can thus be evaluated at the start of the
program. The numerical solution of the linear system (4.404) and (4.405) is
facilitated by first performing a Cholesky decomposition on the matrices X
and Y , which only needs to be performed once. This reduces the number of
arithmetic operations and computing time since the systems are to be solved
at a number of selected grid points and for a given number of user-defined
quantities. Details of the numerical procedure are described in Press et al.
(1992).

Once the parameters a0, an and bn are determined, the harmonic expan-
sion (4.398) is written into the form

F (ξ1, ξ2, σ, t) = A0 +

Nh∑
n=1

An cos(ωn(t− tc)− ϕnc) (4.412)
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where the residual A0, the amplitudes An and the phases ϕnc (with respect
to the central time tc) are obtained from

A0 = a0 , An = (a2n + b2n)1/2 , ϕnc = mod(arctan(bn/an), 2π) (4.413)

The actual phase ϕn can be obtained in the program with respect to either

1. the central time
ϕn = ϕnc (4.414)

2. the astronomical Greenwich phase. Letting

ϕn = ϕnc + Vn(tc) + un(tc) (4.415)

One has
ωn(t− tc)− ϕnc ' Vn(t) + un(t)− ϕn (4.416)

3. a given reference date defined by

tref = t+ ∆ref (4.417)

where ∆ref is time difference between the initial date of the simulation
and the reference date. Letting

ϕn = ϕnc − ωn(tc + ∆ref ) (4.418)

one obtains
ωn(t− tc)− ϕnc = ωntref − ϕn (4.419)

Important to note is that the number and values of the frequencies ωn
used in the harmonic analysis do not need to be the same as the ones ap-
pearing in the tidal forcing, as given by the harmonic expansions (4.230) or
(4.354). For example, if the model is forced with the M2-tide only, higher
order harmonics (M4, M6, . . . ) are generated by the non-linearities of the
model equations. These higher order terms can be investigated by applying
an harmonic analysis. The method can be also used to analyse the evolution
of a M2-tide during a spring-neaps cycle, e.g. by forcing the model with a
M2- and S2-tide and performing the analysis with only the M2-frequency at
different times t = tc, tc + T , . . . (e.g. Luyten, 1997). Luyten et al. (2003)
applied the same procedure for the analysis of internal waves in the North
Sea.

The period T needs to be selected with some care. A general rule is
that it must be of the same order or larger than any of the analysed periods
2π/ωn and must increase with the number of frequencies. A more stringent
restriction is imposed if two freqiencies ωi and ωj are nearly equal to avoid
aliasing effects, in which case T should larger than 2π/|ωi − ωj|.
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4.12.2 Tidal ellipses

During the course of a tidal cycle the current vector describes a curve, known
as the “tidal ellipse”. Characteristic parameters of tidal ellipses are the semi-
major axis, semi-minor axis, ellipticity, orientation and elliptic angle. They
can optionally be derived by the program in the usual way (e.g. Godin, 1972)
once the harmonic parameters of the current are available using the analysis
of the preceding section. The “nth” harmonic component of the horizontal
current can be written as

un = uan cos(ωnt− ϕnu) , vn = van cos(ωnt− ϕnv) (4.420)

Introducing the complex notation

U = uae
−iϕu , V = vae

−iϕv (4.421)

where the subscript n has been omitted for simplicity, the complex current
can then be decomposed into a cyclonically and an anticyclonically rotating
component

u+ iv =
1

2
(Ueiωt + Ũe−iωt) +

i

2
(V eiωt + Ṽ e−iωt)

= S+e
iωt + S̃−e

−iωt (4.422)

where a ˜denotes the complex conjugate and

S± =
1

2
(U ± iV ) = |S±|eiα± (4.423)

The semi-major axis A, semi-minor axis B and ellipticity e of the ellipse,
described by the current, are then given by

A = |S+|+ |S−| , B = ||S+|− |S−|| , e = (|S+|− |S−|)/(|S+|+ |S−|) (4.424)

The inclination Θ of the ellipse with respect to the ξ1-axis and the elliptic
angle Φ, i.e. the angle between the initial current at t = 0 and its position
when the current achieves its first maximum, are obtained using

Θ = (α+ − α−)/2 , Φ = −(α+ + α−)/2 (4.425)

with the restriction that

0 ≤ Θ,Φ ≤ π (4.426)
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The orientation of the ellipse is determined by the sign of the ellipticity. A
positive value of e means that the current vector rotates cyclonically (anti-
clockwise in the northern hemisphere) and |S+| > |S−| whereas a negative
value indicates anticyclonic rotation (clockwise in the northern hemisphere)
and |S+| < |S−|. If e = 0, the flow is rectilinear and |S+| = |S−|. A useful
discussion of cyclonic and anticyclonic components and their impact on the
depth of the tidal bottom layer can be found in e.g. Prandle (1982); Soulsby
(1983); Luyten (1996).

Implementation

The following switches are available for harmonic analysis

iopt out anal Switch to enable (1) or disable (0) harmonic analysis

iopt astro anal If iopt astro anal=1 and cdate timeref is not defined, the har-
monic phases ϕn are calculated with respect to the astronom-
ical phase at Greenwich. Otherwise the phases are obtained
with respect to a given reference date or to the central time,
depending on whether cdate timeref is defined or not (see Sec-
tion 20.3.1).
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