
Chapter 12

Structure of the model code

12.1 Source code files

The main code files, located in the source directory, can be classified into
distinct groups, using their file name.

• Files with suffix .f90 are FORTRAN source code files, files with .F90
are FORTRAN files containing C-language code (#ifdef) statements.

• Files whose name start with a lower case character and include no
underscore character, contain “declaration modules” with declarations
of variables and arrays as described in Section 8.1.5.

• Files whose name start with a lower case character and include an
underscore character, contain module routines, as described in Sec-
tion 8.1.5. The routines are often generic and of a general nature.

• Files whose name start with an upper case character (except Usrdef *
files) are external subprograms with “actual” code.

• Files whose name start with Usrdef , contain routines for user setup.
(The ones in the source directory are empty and intended for proper
compilation only, user-defined versions are defined elsewhere).

499

500 CHAPTER 12. STRUCTURE OF THE MODEL CODE

Table 12.1: List of declaration module files.

file name contents

currents.f90 (2-D and 3-D) current arrays
datatypes.f90 definitions of all derived types, used in the program
density.f90 density arrays
depths.f90 water depth and surface elevations arrays
diffusion.f90 horizontal and vertical diffusion coefficient arrays
fluxes.f90 arrays of surface and bottom fluxes, drag and exchange coeffi-

cients, roughness lengths
grid.f90 model grid arrays
gridpars.f90 model grid and related parameters
iopars.f90 parameters and arrays for all kind of I/O (including user-defined)
meteo.f90 surface meteorological arrays
modids.f90 key id definitions of physical model variables
nestgrids.f90 parameters and arrays for sub-grid nesting applications
obconds.f90 arrays for 2-D and 3-D open boundary conditions, arrays for 1-D

surface forcing
optics.f90 optical arrays (including irradiance)
paralpars.f90 parameters and arrays needed for parallel applications
physpars.f90 physical model parameters
relaxation.f90 arrays for applying relaxation conditions
sedarrays.f90 sediment model arrays
sedids.f90 key id definitions of sediment model variables
sedpars.f90 sediment model parameters
sedswitches.f90 sediment model switches
structures.f90 parameters and arrays for the structure and discharge units
switches.f90 physical model switches
syspars.f90 “system” parameter constants
tide.f90 parameters and arrays for tidal applications
timepars.f90 date and time parameters
turbpars.f90 turbulence model constants
turbulence.f90 turbulence model arrays

12.1. SOURCE CODE FILES 501

Table 12.2: List of module routine files.

file name contents

array interp.f90 routines for interpolation on the model grid
cf90 routines.F90 library of netCDF routine calls
check model.f90 routines for checking of user-defined parameters and ar-

rays in the physical model
check sediments.f90 routines for checking of user-defined parameters and ar-

rays in the sediment model
cif routines.f90 utility routines used for reading and writing a CIF
comms MPI.F90 library of MPI routine calls
datatypes init.f90 initialisation of derived type scalar and array variables
default model.f90 default settings for the physical model
default sediments.f90 default settings for the sediment model
diagnostic routines.F90 utility routines calculating terms in the energy equation,

total energy, potential energy, enstrophy and vorticity
error routines.F90 routines performing error checking
fft library.f90 routines for performing fast Fourier transforms
grid interp.f90 routines for performing interpolation from and to external

grids and locations
grid routines. f90 utility routines performed on the model grid
inout paral.f90 routines for preparing input/output in parallel mode
inout routines.f90 routines for performing input/output in standard format
math library.f90 library of diverse mathematical routines (e.g. root finder)
model output.f90 routines for defining standard output data in the physical

model
modvars routines.f90 attributes of variables and files in the physical model
nla library.F90 linear algebra library
paral comms.f90 parallel communication library
paral utilities.f90 utility routines for parallel applications
reset model.F90 reset setup parameters and arrays in the physical model

defined by the user
reset sediments.f90 reset setup parameters and arrays in the sediment model

defined by the user
rng library.f90 random generator library
sediment output.f90 routines for defining standard output data in the sediment

model
sedvars routines.f90 attributes of variables and files in the sediment model
time routines.f90 (calendar) date and time utility routines
turbulence routines.F90 routines used by the turbulence subprogram
utility routines.f90 various utility routines

502 CHAPTER 12. STRUCTURE OF THE MODEL CODE

Table 12.3: List of files with external procedures.

file name contents
Advection Terms.F90 advective terms in the transport equations
Allocate Sediment Arrays.f90 allocate/deallocate variables with a global

scope for the sediment model
Allocate Sediment Arrays.f90 allocate/deallocate variables with a global

scope for the sediment model
Bottom Fluxes.f90 bottom drag coefficient and shear stress
Coherens Program.f90 COHERENS main program
Corrector Terms.F90 corrector terms in the transport equations
Density Equations.F90 salinity and temperature equations,

optical module, equation of state, baroclinic
pressure gradient

Diffusion Coefficients.F90 horizontal and vertical diffusion coefficients
Diffusion Terms.F90 diffusion terms in the transport equations
Grid Arrays.F90 model grid parameters and arrays (grid spac-

ings, pointer arrays, open boundary locations,
water depths)

Harmonic Analysis.f90 harmonic analysis
Hydrodynamic Equations.F90 hydrodynamic equations (currents, 2-D mode,

elevations)
Model Finalisation.f90 finalise physical model
Model Initialisation.F90 initialise physical model
Model Parameters.f90 read/write a CIF for the physical model
Nested Grids.F90 sub-grid nesting
Open Boundary Conditions.f90 apply open boundary conditions
Open Boundary Data 2D.f90 define 2-D open boundary conditions and up-

date data
Open Boundary Data Prof.f90 define 3-D open boundary conditions and up-

date data
Parallel Initialisation.f90 initialise parallel mode (parameters, domain

decomposition, ...)
Relaxation Zones.f90 define and apply relaxation conditions
Sediment Bottom Fluxes.F90 near bed boundary conditions, (skin) shear

stress and roughness length, and critical shear
stress in the sediment model

Sediment Density Equations.F90 sediment contributions in the calculations
within the physical model involving density

Sediment Equations.F90 COHERENS sediment module (main part)
(Continued)

12.1. SOURCE CODE FILES 503

Table 12.3: Continued

Sediment Finalisation.f90 finalise sediment model
Sediment Initialisation.F90 initialise sediment model
Sediment Parameters.f90 read/write a CIF for the sediment model
Structures Model.f90 structure (dry cells, thin dams, weirs, barriers)

and discharge model units
Surface Bounday Data 1D.f90 define and apply surface forcing conditions

(slope and elevation) for the water column
mode

Surface Data.f90 update 2-D external forcing data
Surface Fluxes.F90 surface fluxes
Surface Grids.f90 define 2-D external grids
Tidal Forcing.F90 astronomical argument, nodal factors,

tidal force
Time Averages.f90 time-averaged output
Time Series.f90 time series output
Transport Equations.F90 solve transport equations
Turbulence Equations.F90 turbulence models

Table 12.4: List of user-defined routine files.

file name contents

Usrdef Harmonic Analysis.f90 parameters and data for harmonic analysis and
output

Usrdef Model.f90 “basic” model setup (model parameters,
bathymetry, domain decomposition, initial
conditions, open boundary conditions)

Usrdef Nested Grids.f90 setup of sub-grids for nesting
Usrdef Output.f90 output completely specified by the user
Usrdef Sediment.f90 setup of the sediment model
Usrdef Surface Data.f90 definition of external 2-D grids and update of 2-D

external data
Usrdef Time Averages.f90 parameters and data for time-averaged output
Usrdef Time Series.f90 parameters and arrays for time series output

504 CHAPTER 12. STRUCTURE OF THE MODEL CODE

12.2 Structure diagrams

12.2.1 General structure

The general structure of the program is given in Figure 12.1. The program

temperature

initialise model

finalise model

currents

gradients
 density

optical module

meteorological
 data

heat fluxes

river and open
boundary input

advection−diffusion
module

turbulence

meteorological
 data

river and open
boundary input

solar radiation
bottom stress

wind stress

finalise MPI

initialise MPI

read title

exit

surface elevation

salinity

biology

Structure of the physical model

End of File

sediment

Figure 12.1: General structure of COHERENS.

contains two major loops.

• The first (outer) loop is contained within the large (semi-)rectangle.
Each cycle corresponds to a new simulation, initiated by reading a next
input line from the file defruns. This is further discussed in Section 14.1.

• The second (inner) loop within the smaller rectangle denotes the time-
stepping.

12.2. STRUCTURE DIAGRAMS 505

Each simulation is composed of three parts: initialisation, time-stepping
(where the actual calculations are performed) and finalisation. Details are
given below. Initialisation and finalisation of MPI are the only procedures
outside the outer loop. This means that, although multiple simulations can
be performed within one run, they must all be conducted either in serial or
in parallel mode.

The advection-diffusion module forms the central “core” part of the time-
loop section. The module is coded in a generic way and solves the advective-
diffusive transport equations of any scalar variable (temperature, salinity,
sediment concentrations, biological state variables, . . .), 3-D and 2-D cur-
rents, and turbulence tranport equations. The inputs for the routine are
prepared in separate routines for each variable (temperature, salinity, 3-D
currents, 2-D currents, sediments, turbulent energy, . . .) and are composed
of source terms, open boundary and surface forcing data. The boundary
data are obtained via general routine calls. For example, there is one pro-
gram module (discussed in Section 12.2.4 below) dealing with reading and
updating of open boundary profile data for any 3-D quantity.

12.2.2 Initialisation procedures

The initialisation procedures are schematically presented in Figure 12.2. Ex-
cept for user output, all initialisation routines are called from initialise model.

The first task to be performed by the program is the definition of all
parameters and arrays needed to setup the application. This is organised in
different sections.

1. Model parameters:

• model switches

• date and time parameters (start and end date, time steps)

• model grid (dimensions, resolution, number of open sea and river
boundaries)

• various parameters like number and type of tidal constituents,
number of nested sub-grids, ...

• parameters for setting up the model in parallel mode

• physical model parameters

• numerical model parameters

• parameters for the turbulence sub-module(s)

• attributes of external 2-D grids

506 CHAPTER 12. STRUCTURE OF THE MODEL CODE

• attributes of the forcing files

• parameters to define the type and form of monitoring

• parameters and switches for the sediment transport module

For details see Chapter 14.

2. Model grid and bathymetry:

• coordinates of the model grid

• bathymetry

• location of open boundaries

For details see Sections 15.1.

3. Domain decomposition (parallel mode, see Section 14.9). Once the
model grid and domain decomposition have been defined, memory is
allocated to all model grid arrays and a series of additional arrays (grid
spacings, pointer arrays, . . .) are defined.

4. Initial conditions (see Section 15.2 for the physics and 19.2 for the
sediments).

5. Definition of the areas for application of the open boundary relaxation
scheme (Section 16.3).

6. Locations of nested sub-grid(s) (see Section 17.3).

7. Positions of external 2-D data grids (Section 17.2).

8. Type and form of open boundary conditions for the 2-D mode (Sec-
tion 16.1.1), baroclinic currents and all 3-D scalars (Section 16.2.1).

9. Initialise surface and bottom fluxes.

10. Parameters for setting up user defined output (see Chapter 20).

Open boundary and surface forcing data are usually given as time series.
If the first data time coincides with the initial time, the data file is opened and
the first and (eventually second) time records are read from the file during the
initialisation phase of the program. This has the further advantage that error
checking can be performed (existence of the file, data formats, ...) before the
program enters the time loop.

12.2. STRUCTURE DIAGRAMS 507

Model parameters and switches for the different mofel compartments
(physics, sediments) can be defined either in a usrdef routine or by read-
ing from a Central Input File (CIF).

Each section of the initialisation contains (or may contain) the following
sub-tasks:

1. Defaults values are given to several model parameters and arrays. In
many cases, these defaults are meaningfull and should be maintained.
In other case, they are not meaningfull and must be replaced by the
user. The advantage of such procedure is a more efficient error checking.

2. Values are (re)-defined. Two methods are available:

• The definitions are programmed by the user in a usrdef routine.
Options are foreseen in the program to write these definitions to
an external file in COHERENS standard format.

• All values are obtained as input from an external file in COHE-
RENS standard format.

3. Depending on the definitions given by the user, parameters are reset
from their default values.

4. The setup of the model (definitions of model parameters and arrays)
are checked for errors. If errors are detected, appropriate messages are
written to an errlog file and the program aborts.

12.2.3 Time loop

Figure 12.3 shows a diagram of the time loop. The order of routine calls is
in line with the solution procedure described in Section 5.8.

The routines where the 2-D mode, 3-D current, temperature, salinity
and sediment transport equations are solved, are schematically presented in
Figures 12.4–12.8. Each routines is composed of an initialisation section, a
main part where the variable(s) is (are) updated and a finalisation section.

initialisation Actions performed during the initialisation phase (time t=0):
allocation of local arrays, definition of open boundary conditions, open-
ing of data files and reading of first time records.

• The initialisation of the 2-D mode is actually perfomed in routines
update 2dobc data called from current 2d and define 2dobc spec
called from update 2dobc data.

• Open boundary conditions for 3-D currents are defined in current cor.

508 CHAPTER 12. STRUCTURE OF THE MODEL CODE

• If the temperature equation is forced with SST, the SST grid and
data are defined and initialised in temperature equation.

main section

• update open boundary data

• apply open boundary conditions

• apply surface and bottom boundary conditions (3-D variables only)

• calculate source terms

• solve the transport equations by calling the appropriate transport
routine

• exchange array sections with neighbouring sub-domains (parallel
mode only)

• write interpolated data for nested sub-grids (if requested)

finalisation Deallocate arrays at the current or final time step.

The following remarks are to be given:

• Surface elevations are updated in current 2d before the depth-integrated
transports.

• Open boundary conditions are applied in current 2d after solving the
2-D depth-integrated momentum equations.

• The 3-D current calculations are split over two routines called at diffe-
rent (predictor and corrector) time steps: surface and bottom boundary
conditions are applied, source terms calculated and transport equations
solved in current pred; open boundary conditions and corrector step are
applied, vertical currents calculated and nested output written in cur-
rent corr.

• Besides routines for solving the transport equations for all sediment
fractions, the sediment model provides separate routines for update of
the bed or total load transport.

• Meteorological forcing data are defined by a separate call to meteo input
from the main program.

The update of a 2-D or 3-D quantity by an advection-diffusion type equa-
tion is performed in one of the transport at * routines, which integrates the
model equations in time. Exceptions are surface elevation and vertical cur-
rent which are obtained from the 2-D and 3-D continuity equations. The
procedures closely follow the numerical descriptions given in Chapter 5 so
that no diagrams need to be given here.

12.2. STRUCTURE DIAGRAMS 509

12.2.4 Open boundary and surface forcing data input

The procedure for applying open boundary conditions for the 2-D mode is
summarised in Figure 12.9:

1. The routine update 2dobc data is called from current 2d:

• At the initial time the routine define 2d obc spec is called where

– A series of arrays to be specified by the user, are allocated.

– The arrays are defined by calling either the user-defined rou-
tine usrdef 2dobc spec or as input from a standard COHE-
RENS file by calling read 2dobc spec. If requested, the arrays
are written to a standard file by calling write 2dobc spec.

– Error checking is performed.

• If there are external data files, it is checked first for each data
file, whether the data are still up to date, which means that the
last date and time for which data are available is later than the
current one. If this is not the case (such as at the initial time),
define 2d obc data is called where:

– New data are obtained by calling either the user-defined rou-
tine usrdef 2dobc data or as input from a standard COHE-
RENS file by calling read 2dobc data. If requested, the arrays
are written to a standard file by calling write 2dobc data.

– If an end of file condition occurs, further action is deter-
mined by the endfile attribute. This is further discussed in
Section 14.7.2.

• The new data (if any), representing the ψe0 term in equation (4.354),
are stored in the appropriate open boundary arrays and interpo-
lated in time (if requested).

• Harmonic tidal expansions are evaluated. If needed (which is
usually the case at the initial time), astronomical arguments and
nodal factors are calculated by calling astro params. The harmonic
terms are added to the data values.

2. The open boundary conditions are applied by calling open boundary conds 2d.

User-defined setup for 2-D open boundary conditions is further discussed in
Section 16.1.

The procedure for applying open boundary conditions for the 3-D mode
is given in Figure 12.10. The code is written in a generic form so that the
routines can be used for any 3-D quantity (currents, temperature, . . .).

510 CHAPTER 12. STRUCTURE OF THE MODEL CODE

1. At the initial time the routine define profobc spec is called from the
“main” routine (current corr, temperature equation, . . .):

• A series of arrays to be specified by the user, are allocated.

• The arrays are defined by calling either the user-defined routine
usrdef profobc spec or as input from a standard COHERENS file
by calling read profobc spec. If requested, the arrays are written
to a standard file by calling write profobc spec.

• Error checking is performed.

2. The routine update profobc data is called where:

• It is checked first for each data file, whether the data are still up
to date, which means that the last date and time for which data
are available is later than the current one. If this is not the case
(such as at the initial time), define profobc data is called where:

– New data are obtained by calling either the user-defined rou-
tine usrdef profobc data or as input from a standard COHE-
RENS file by calling read profobc data. If requested, the arrays
are written to a standard file by calling write profobc data.

– If an end of file condition occurs, further action is deter-
mined by the endfile attribute. This is further discussed in
Section 14.7.2.

• The new data (if any) are stored in the appropriate open boundary
profile arrays and interpolated in time (if requested).

• If any of the interpolating values has a flagged value, the inter-
polated open boundary profile data value will be flagged as well.
A flagged value at a certain vertical level within a vertical pro-
file means that a zero gradient condition will be applied at that
particular level.

3. The open boundary conditions are applied by calling open boundary conds 3d
for baroclinic currents or open boundary conds prof for scalars.

User-defined setup for baroclinic open boundary conditions is further dis-
cussed in Section 16.2.

The application of 2-D external data requires firstly the definition of the
data grid, which is implemented as follows (no diagram shown):

1. A derived type “grid” array is created by allocation in the “main”
routine (meteo input for the meteo, temperature equation for the SST

12.2. STRUCTURE DIAGRAMS 511

grid or wave input for surface waves), for storing the relative coordinates
of the data grid with respect to the model grid (see Section 8.1.4).

2. The grid is defined by calling define surface input grid. Definition de-
pends on the value nhtype grid attribute (see Section 10.4.2):

0: No grid needs to be defined

1: The grid is uniform rectangular and is defined by calling
construct regular grid.

2: The grid is non-uniform rectangular. Coordinate arrays are obtained
by calling either the user-defined routine usrdef surface absgrd or as
input from a standard COHERENS file by calling read surface absgrd.
If requested, the coordinates are written to a standard file by calling
write surface absgrd. The relative coordinates are obtained by calling
model to data coords.

3: The grid is non-uniform and non-rectangular. The relative coordi-
nate arrays are directly obtained by calling either the user-defined
routine usrdef surface relgrd or as input from a standard COHERENS
file by calling read surface relgrd. If requested, the coordinates are
written to a standard file by calling write surface relgrd.

4: The grid coincides with the model grid and does not need to be
defined here.

Setup of 2-D data grids is discussed in Sections 17.2.1–17.2.2.
The procedure for the input of forcing data from a 2-D external data grid

is shown in Figure 12.11. The code is written in a generic form so that the
routines can be used for meteorological, SST, wave, . . . data. The routine
update surface data is called from the “main” routine (meteo input for the
meteo or temperature equation for the SST grid):

1. It is checked first for each data file, whether the data are still up to date,
which means that the last date and time for which data are available is
later than the current one. If this is not the case (such as at the initial
time), define surface data is called where:

• New data are obtained by calling either the user-defined routine
usrdef surface data or as input from a standard COHERENS file by
calling read surface data. If requested, the arrays are written to a
standard file by calling write surface data.

• If an end of file condition occurs, further action is determined by
the endfile attribute. This is further discussed in Section 14.7.2.

512 CHAPTER 12. STRUCTURE OF THE MODEL CODE

2. The data are interpolated in time.

3. If any of the interpolating values has a flagged value, the interpolated
open boundary profile data value will be flagged as well. In case of
SST data, the flagged value is replaced by the modelled temperature
at the highest level. There is currently no procedure foreseen for flagged
meteorological data values.

4. The data are interpolated in space by calling intpol data to model 2d if
0<nhtype<4.

12.2.5 Finalisation procedures

After termination of the time loop the simulation is finalised as follows:

• All files, which are still open with exception of monitoring files, are
closed.

• A timer report is written on request.

• Model arrays, which are still allocated, are deallocated.

• All monitoring files are closed.

• A new input line is read from the defruns file. If there is an end of
file condition, the program checks whether MPI was switched on at
the start, finalises MPI if needed and terminates. Otherwise, a new
simulation starts and all model parameters and arrays are reset to
their default values as part of the re-initialisation procedures discussed
in Section 12.2.2.

12.2. STRUCTURE DIAGRAMS 513

read, usrdef, writedefault

read, usrdef, writedefault

check

check

default
defime model parameters

(physics,sediment,biology)

define MPI communicator

define model grid

domain decomposition
communication parameters

grid arrays (grid spacings,
pointers, ...)

default read, usrdef, write reset check

reset check

equation of state

astronomical tides

meteo grid read, usrdef, write relative coordinates

read, usrdef, writefirst meteo data

wave grid

first wave data

read, usrdef, write relative coordinates

read, usrdef, write

initialise surface/bottom fluxes

define relaxation conditions

define initial conditions
(physics,sediment,biology)

initialise arrays
(physics,sediment,biology)

diffusion coefficients

read, usrdef, write weight factors

nest locations read, usrdef, write relative coordinates

first final conditions

first user output

write CIF

(physics,sediment,biology)

define default read, usrdef, write check

first data read, usrdef, write check

(2−D, currents, temperature, salinity,
sediment, biology)

open boundary conditions

Model initialisation

read, usrdef, CIF, write

baroclinic gradient

allocate model arrays

Figure 12.2: Schematic diagram of all initialisation procedures.

514 CHAPTER 12. STRUCTURE OF THE MODEL CODE

predictor
step

corrector
step

predictor
step

corrector
step

user output

final conditions

temperature_equation

nt−1 multiple of ic3d

nt = nt+1

time loop

equation_of_state

mask_function

store_old_depths

vertical_diff_coefs

baroclinic_gradient

nt = 0

update_time

meteo_input

nt−1 multiple of ic3d current_pred

current_2d

nt multiple of ic3d current_corr

nt multiple of ic3d

salinity_equation

biological_model

nt < nstep

hydrodynamic_equations

horizontal_diff_coefs

sediment_equation

astronomical_tides

Figure 12.3: Structure diagram of the time loop.

12.2. STRUCTURE DIAGRAMS 515

atmospheric pressure

surface slope

bottom stress

surface stress

coriolis (explicit)

source terms

solve continuity equation

open boundary data

initialise

solve transport
equations

coriolis (implicit)

baroclinic pressure

update_2dobc_data

surface_elevation

astronomical tides

current_2d

exchange

transport_at_V_2d

transport_at_U_2d

exchange_mod

update_nest_data_2d

open boundary conditions

mean currents

sub−grid data

open_boundary_conds_2d

finalise

exit

Figure 12.4: Diagram of routine current 2d which solves the 2-D mode equa-
tions.

516 CHAPTER 12. STRUCTURE OF THE MODEL CODE

atmospheric pressure

surface slope

tidal force

baroclinic pressure

coriolis (explicit)

source terms

initialise

coriolis (implicit)

update open boundary data

apply boundary conditions

corrector scheme

filtered currents

relaxation scheme

equations
solve transport

transport_at_V_3d
transport_at_U_3d

update_profobc_data

open_boundary_conds_3d

relaxation_at_V

relaxation_at_U

current_pred current_corr

nt=0

define open boundary
conditions

first open boundary data

sub−grid data

define_profobc_spec

update_profobc_data

update_nest_data_3d

exit

exchangeexchange_mod

finalise

n
o

exit

vertical current

exchange exchange_mod

transf_physical_current

transf_vertical_current

exchange_mod

bottom_stress

surface_stress
bottom/surface stress

sub−grid data update_nest_data_3d

finalise

exit

yes

Figure 12.5: Diagrams of the routines current pred and current corr which
solve the 3-D momentum equation at the predictor and corrector step.

12.2. STRUCTURE DIAGRAMS 517

define open boundary
conditions

first open boundary data

sub−grid data

update open boundary data

apply boundary conditions

surface boundary
conditions

solve transport
equations

define open boundary
conditions

first open boundary data

sub−grid data

first sst data

update open boundary data

apply boundary conditions

surface boundary
conditions

solve transport
equations

source terms

define_profobc_spec

update_profobc_data

update_nest_data_prof

update_surface_data

update_profobc_data

open_boundary_conds_prof

solar_irradiance

heat_optics

heat_flux

update_surface_data

transport_at_C_3d

define_profobc_spec

update_profobc_data

update_nest_data_prof

update_profobc_data

open_boundary_conds_prof

salinity_flux

transport_at_C_3d

temperature_equation salinity_equation

nt=0

exit

nt=0

n
o

exit

exchange exchange_mod

sub−grid data

finalise

exit

update_nest_data_prof

exchange exchange_mod

sub−grid data

finalise

update_nest_data_prof

impose lower
 limit

exit

yes yes

n
o

Figure 12.6: Diagrams of the routines temperature equation and
salinity equation which solve the temperature and salinity equations.

518 CHAPTER 12. STRUCTURE OF THE MODEL CODE

Sediment equations

iopt_sed_

mode

For all sediment fractions

io
p
t_

s
e
d
_
m

o
d
e

=
 2

Sediment_advdiff

Kinematic viscosity

Bed shear stress sediment

Median particle size

Bed gradient

Critical shear stress

io
p
t_

s
e
d
_
m

o
d
e

=
 3

Sediment_advdiff

io
p
t_

s
e
d
_
m

o
d
e

=
 4

qt = f(tb)

io
p
t_

s
e
d
_
m

o
d
e

=
 1

qb f(tb)

qt = f(tb)

Figure 12.7: Diagram of the routine sediment equation which is the “main”
routine of the sediment transport model.

12.2. STRUCTURE DIAGRAMS 519

Initialize sed model

Sediment_adv_diff

Update OBC

nt = 0

ws

hindered settling

flocculation

b = f(ws)

loop number of sediment

fractions: ni = 1,…,nf
ni = 1

MPI exchange Nesting Dealloc sediment

iopt_sed_nodim = 2iopt_sed_nodim = 3

nodim

user defined

sources

settling

(see detail)

Settling

E-D = ws(ca –c(a)) (sand)

E-D = f(tb,) - wsc(a) (mud)

E-D = ws(Ceq-C)/T (sand)

E-D = ws(Ceq-C)/T (mud)

advection-

diffusion eq.

sum all fractions

n
i
<

 n
f

Bartnicki filter

Figure 12.8: Diagram of the routine sediment advdiff equation which solves
the transport equations for sediments.

520 CHAPTER 12. STRUCTURE OF THE MODEL CODE

define open boundary
conditions

allocate read, usrdef, write check copy

allocate/initialise

check latest
data time

define new data read, usrdef, write

define_2dobc_spec read_2dobc_spec, usrdef_2dobc_spec, write_2dobc_spec

define_2dobc_data read_2dobc_data, usrdef_2dobc_data, write_2dobc_data

nt=0

exit

time interpolation

phases and nodal factors

(add) harmonic series

n
o

finalise

exit

astro_params

time
check update

update_2dobc_data

yes

yes yes

n
o

n
o

Figure 12.9: Diagrams of the routines used for defining and updating 2-D
open boundary conditions and data.

read_profobc_spec

define

initialise

reset

write

check

copy

exit

copy_vars

write_profobc_spec

check update
time

check latest
data time

define new data read, usrdef, write

exit

define_profobc_data

time interpolation

read_profobc_data, usrdef_profobc_data, write_profobc_datadefine_profobc_spec update_profobc_data

usrdef_profobc_spec

Figure 12.10: Diagrams of the routines used for defining and updating 3-D
open boundary conditions and data.

12.2. STRUCTURE DIAGRAMS 521

time interpolation

check update
time

check latest
data time

space interpolation

define new data read, usrdef, write

read_surface_data, usrdef_surface_data, write_surface_datadefine_surface_data

n
o

exit

update_surface_data

yes yes

n
o

Figure 12.11: Diagram of the routines used for defining and updating data
from an external 2-D grid.

522 CHAPTER 12. STRUCTURE OF THE MODEL CODE

	III Description of the model code
	Structure of the model code
	Source code files
	Structure diagrams
	General structure
	Initialisation procedures
	Time loop
	Open boundary and surface forcing data input
	Finalisation procedures

