Chapter 11

Aspects of parallellisation

11.1 Basic principles

11.1.1 Implementation of MPI

With the implementation of MPI the work load is divided among a given
number NN, of processes. MPI uses non-shared memory, i.e. each process
does not share its own memory with the other processes. The global domain
is divided in N, horizontal sub-domains (no decomposition in the vertical).
To solve the discretised equations in the horizontal, communications need
to be set up between neighbouring domains. Communications are handled
by the routines of the MPI (Message Passing Interface) library (MPI] 1995).
Current implementation is Version 1.1.

Advantages are:
e The program runs faster.
e Internal memory is reduced when increasing N,,.
e Land areas can be removed from the global domain by taking a suffi-
ciently large number of processes.
Disadvantages are:

o Increasing N, decreases the work load per process but increases the
number of communications and % of time spent in communications. A
maximum effficiency will be attained when N, = N,,,, depending on
the application. The effect is illustrated in Figure [11.1

481

482 CHAPTER 11. ASPECTS OF PARALLELLISATION

14 T T T T

12 —

10 |

OPTOS-CSM ———
OPTOS-NOS
OPTOS-BCZ --------

serial/parallel CPU time

0 1 1 1 1
0 5 10 15 20

Number of processes

Figure 11.1: CPU efficiency, defined as the CPU time for a serial run di-
vided by the one obtained for the parallel run, as function of the number of
processes for the three optos test cases.

e Parallellisation is less efficient for 2-D (horizontally averaged) simu-
lations and the mode-splitting scheme (vertical profiles reduce to one
point, small time steps).

e Parallel code produces a slight overhead for serial applications.

MPI routine calls are only found in the file comms MPLF90[[] Each
MPI routine call (starting with MPI_) has a corresponding alias (starting
with comms_). This allows a more efficient implementation of future MPI
versions.

1Sole exception is the MPl_abort call in error_routines.F90. Since MPI is based upon
FORTRAN 77, MPI parameters are declared and defined in an “include” file instead of a
module file. Instead of a USE a INCLUDE mpif.h statement has to be made inside the
code, contrary to the programming rules stated in Section This will be removed in
future MPI implementations.

11.2. DOMAIN DECOMPOSITION 483

11.1.2 Principles of the parallel code
Variables (parameters and arrays) on a parallel grid can either be:
global defined on each sub-domain with the same value

local either defined on each sub-domain but with different values or defined
on one or more (but not all) sub-domains

A specific aspect of parallellisation is that different effects are or may be
procuced by the model code on different domains:

e A variable may be defined on one and non-defined on another domain.

e Arrays can be either allocated, deallocated or undefined on different
domains.

e Local arrays usually have different shapes (or may be of size 0) on
different domains.

e An IF statements may evaluate as .TRUE. on one or .FALSE. on an-
other sub-domain if the expression contains local variables.

The basic rule for an efficient parallel code is that the work load is (as
much as possible) equally spread among the processes. An important (but
unevitable) exception is that output operations (except for log and error
files) are restricted to one process, called the “master” process. On the other
hand, all processes are allowed to read from the same file, avoiding to copy
the input data from one particular “reader” process.

11.2 Domain decomposition

11.2.1 Definition

Process domains are arranged as a 2-D “parallel” grid with dimensions nprocsx
and nprocsy. Domains, solely composed of land points, can be excluded from
the grid so that nprocsxxnprocsy>nprocs where nprocs is the number of “ef-
fective” processes. Each domain has a process id number, between 0 and
nprocs-1, which is assigned by MPI, and two domain grid indices (i,j) where
1<i<nprocsx and 1<j<nprocsy. Dummy (land) domains are defined with a
NULL process id (MPI_proc_null). Work load is as much as evenly partitioned
between the sub-domains (since the sub-domains are not of the same size).
Exception is the master process which is the only one with write access.
Reading is performed by all processes (except defined otherwise by the user).

484 CHAPTER 11. ASPECTS OF PARALLELLISATION

4x3 domain layout with 12 processes

8,31 1 9,32 10,33 . 11,34
| | | 5x1 domain layout with 5 processes
4210 52 623 T2 0.4h LAY b 23 g sds o 405
0,(L,) L, 1 2,13 1 3014
not allowed !

**

—_—t

Figure 11.2: Examples of allowed and non-allowed domain decompositions.
The first number is the process id, the two numbers in parentheses denote
the domain indices.

Some examples of simple domain decompositions are illustrated in Fi-
gure Figure [I1.3] shows an example of a decomposition where part of
the land areas have been removed.

11.2.2 Local grid indexing system

The grid indexing system for a local sub-domain, shown in Figure [11.4] is
practically the same as the one taken on the global grid (see Figure [5.1]).
Main differences are:

e The local grid dimensions are now ncloc and nrloc, instead of nc and
nr.

e The most eastern column and most northern row are no longer com-
posed of dummy land points (except when they are located at the edges
of the global computational domain).

The local grid dimensions and indices are related to the global ones
through the following definitions:

11.2. DOMAIN DECOMPOSITION 485

60““‘““““““?‘\“‘
& i e
= -

58F | 3

/

L |

56 L—

. | R Y

= — > o

= 0 N 5 |

E 547 T

44— ﬁqC

I 75 |

52+ { b
{/\M%

50 F] g

R

Ea N I

-4 -2 0 2 4 6 8 10
Longitude

Figure 11.3: Domain decomposition for the North Sea area with 128 processes
based on a 10x19 domain grid.

ncloc X-dimension of the local domain (local variant of nc)
nrloc Y-dimension of the local domain (local variant of nr)
nclloc global X-index of the leftmost column (local)

nc2loc global X-index of the rightmost column (local)
nrlloc global Y-index of the lowest row (local)

nr2loc global Y-index of the highest row (local)

nclprocs(nprocs) array with the values of nclloc for each domain (global)
nc2procs(nprocs) array with the values of nc2loc for each domain (global)

nrlprocs(nprocs) array with the values of nrlloc for each domain (global

()
nr2procs(nprocs) array with the values of nr2loc for each domain (global)

Global and local indices (at any node) are then related by

iglb = iloc + nclloc - 1
jglb = jloc + nrlloc - 1

486 CHAPTER 11. ASPECTS OF PARALLELLISATION

(@] (@] (@] O O O O (©] O

Figure 11.4: Horizontal layout of the computational grid on a local sub-
domain. Different nodes are indicated by the same symbols as in Figure [5.1]

Domain decomposition is uniquely defined by these last 4 “process” ar-
rays. Two options are available, depending on the value of the switch
iopt_MPI_partit:

1 Simple decomposition: the user specifies the values of two of the three
parameters nprocs, nprocsx, nprocsy. The arrays are defined internally

(see Section for further details).

2 The arrays are defined externally by the user.

Other (global or local) parameters used in the model for parallel applica-
tion are:

parallel_set user-defined parameter to switch on/off the parallel mode
(global)

idloc local process id (local)

iprocloc local process number = idloc+1 (local)

idmaster Process id of the master process (global). Its value can be

changed by the user. Default is 0.
idprocs(nprocs) vector of local process ids (global)
master .TRUE. if idloc equals idmaster, .FALSE. otherwise (local)

shared_read user-defined parameter enabling reading by all processes if
.TRUE. (global)

11.3. HALOS 487

comm_work MPI communicator composed of all “working” processes
(global)

iddomain(0:nprocsx+1,0:nprocsy+1) process id as function of domain grid in-
dices (global)

11.3 Halos

Numerical discretisations in the horizontal and horizontal averaging may re-
quire the availability of values of a model grid array located at grid points
within a neighbouring sub-domain. These values are calculated, not inside
the domain itself, but within its neighbours. They are obtained by estab-
lishing MPIl communications between the domain and its neighbours. Each
of its neighbours sends an internal section of the array which is received and
stored by the domain in one of the local array’s halo sections (see Figure[11.5]

and Figure [11.6)).

Figure 11.5: Illustration of an halo for an array defined on a local sub-domain.
The halo of the sub-domain, located in the inner rectangle, is situated be-
tween the inner and outer rectangles.

A halo is created by adding extra columns and rows to the model array.
Most arrays have halo sizes which are all equal to the parameter nhalo = 2,

e.g.
uvel (1-nhalo:ncloc+nhalo,1-nhalo:nrloc+nhalo,nz)

Other arrays may have smaller halos or asymmetric halos, e.g.

488 CHAPTER 11. ASPECTS OF PARALLELLISATION

(i-1,j+1) @1,j+1) (i+1,j+1)
NW N NE
(i-1) i) (+1)
W E
(-1,j-1) (1j-1 (i+1,j-1
SW S SE

Figure 11.6: Partitioning of a sub-domain halo. Domain indices are given in
parentheses.

gxcoord(0:ncloc+1,0:nrloc+l), atmpres(0:ncloc,0:nrloc)

The West/East/South/North sizes are usually given by a 4-element vec-
tor. The halo sizes of the 3 arrays above are respectively

(nhalo,nhalo,nhalo,nhalo), (1,1,1,1), (1,0,1,0)

Halo sizes of a model array are the same on all sub-domains. The cor-
responding global arrays (i.e. defined over the whole domain) are declared
with the same halo sizes as their local counterparts. Halos of sub-domains
which are located at the edge of the (full) computational domain, extend to
the outside of the computational domain. These outside points are taken as
dummy land points belonging to a dummy outside sub-domain with NULL
process id.

11.4 Communications

11.4.1 Send and receive in MPI

A MPI communication consist of a send operation on one process (say A)
and a receive operation on another process (say B). COHERENS uses only
so-called “blocking” send and receive operations. The implementation in
COHERENS is based upon the following communication modes:

11.4. COMMUNICATIONS 489

1. Synchronous send.

e A sends a message with the data to B.

e B receives the message and the data, sends a message back to A
and completes next.

e A receives the message from B and completes.

This is the most robust mode.
2. Bufffered send.

e A sends a message to B, sends the data to a buffer, and completes
next.

e B receives the message, retrieves the data from the buffer and
completes next.
This mode is useful for transfering a large amount of data.

3. Standard send.

e The operation is performed either synchronously or in buffered
mode. The choice is made internally by MPI .

e Less robust than synchronous mode but usually more efficient.

Only the standard and synchronous mode are implemented in COHE-
RENS.

1. Syntax of a standard send

SUBROUTINE MPI send(buf,count,datatype,dest,tag,comm,ierror)

<type>, INTENT(IN), DIMENSION(*) :: buf initial address of the send
buffer

INTEGER, INTENT(IN) :: count number of elements in the send buffer

INTEGER, INTENT(IN) :: datatype type of data in the send buffer (e.g.
MPI_REAL for real data)

INTEGER, INTENT(IN) :: dest rank (process id) of the destination

process
INTEGER, INTENT(IN) :: tag message tag

INTEGER, INTENT(IN) :: comm communicator (usually comm_work)
INTEGER, INTENT(OUT) :: ierror returned error code.

490 CHAPTER 11. ASPECTS OF PARALLELLISATION

2. Syntax of a synchronous send
SUBROUTINE MPI_ssend(buf,count,datatype,dest,tag,comm,ierror)

where the arguments have the same meaning as before.

3. Syntax of a receive operation

SUBROUTINE MPI recv(buf,count,datatype,source,tag,comn,&
& status,ierror)

<type>, INTENT(OUT), DIMENSION(*) :: buf initial address of the re-
ceive buffer

INTEGER, INTENT(IN) :: count number of elements in the receive
buffer

INTEGER, INTENT(IN) :: datatype type of the data in the receive buffer
(.e.g. MPLINT for integer data)

INTEGER, INTENT(IN) :: source rank (process id) of the source pro-
cess

INTEGER, INTENT(IN) :: tag message tag
INTEGER, INTENT(IN) :: comm communicator (usually comm_work)

INTEGER, INTENT(OUT), STATUS(MPI_STATUS_SIZE) :: status return
status

INTEGER, INTENT(OUT) :: ierror returned error code.

In the COHERENS code, send and receive operations are performed using the
comms_send_* and comms_recv_* routines defined in comms_MPI.F90.

11.4.2 Sort of communications

The following sort of communications are used in the program: copy, dis-
tribute, combine, combine all, exchange, collect.

1. Copy operations.
e Copies (the same) data from a root (usually the master) process

to all other processes.

e The operation involves N,—1 sends from the root and 1 receive at
each other process.

e This is called a “one-to-all” operation and therefore asymmetric.

11.4. COMMUNICATIONS 491

e Used to copy data read by the root process from a data file (not
needed if shared_read = .TRUE.).

2. Distribute operations.

e Copies (i.e. distributes) the local parts of a global model array
from the root process to all other sub-domains. Each local section
may or may not contain the array’s local halo parts.

e The operation involves IV,—1 sends from the root and 1 receive at
each other process.

e This is called a “one-to-all” operation and therefore asymmetric.

e Used to set up initial conditions on each local domain or to dis-
tribute surface data in case the surface data grid coincides with
the model grid. Distribute operations are redundant if shared_read
= .TRUE..

3. Combine operations.

e Copies (i.e. combines) a local array from each sub-domain to a
corresponding section of a global array on the root process. Halos
are not included.

e The operation involves N,—1 receives at the root and 1 send from
each other process.

e This is called a “all-to-one” operation and therefore asymmetric.

e Various versions are implemented:

Combination of local “full” model arrays into a global “full”
array.

Combination of local subsections of model arrays into a global
array.

Combination of local irregular (station) data into a global
array.

Combination of local open boundary arrays into a global boun-
dary array.

e Used for the construction of global arrays, obtained from local
model arrays, local regular or irregular sub-arrays. The global
arrays are mostly intended for output, the calculation of global
array sums, array maxima and minima.

4. Combine-all operations.

492

CHAPTER 11. ASPECTS OF PARALLELLISATION

The same as the combine operation except that the global data
are made available to all processes.

e The operation involves N,—1 sends and /N,—1 receives on each

process.

e This is called a “all-to-all” operation and therefore symmetric.

Note that work load is (about) the same for each sub-domain so
that the CPU time for a combine-all is about the same as for a
corresponding combine operation.

5. Exchange operations.

e Send sub-sections of local model arrays to a corresponding section

within the halo of each neighbouring domain. Receives data from
each neighbouring domain and stores these data in one of its own
halo sections.

Since each sub-domain has 8 neighbours (including dummy do-
mains outside the computational domain), the operation requires
in general 8 sends and 8 receives on each sub-domain. However,
this number can be reduced by specifying the halo sections for
which an exchange is needed or when component(s) of the halo
size vector is (are) zero.

The operation is symmetric.

Exchange operations are an essential part of the parallel code and
are mainly for implementation of numerical algorithms for hori-
zontal advection and diffusion, and for horizontal averaging.

6. Collect operations.

e Stores all local arrays into one global array with an extra dimen-

sion of size nprocs.

e The operation involves N,—1 sends and N,—1 receives on each

domain.

e This is a “all-to-all” operation and therefore symmetric.

e The operation is not frequently used.

Remarks:

e The root process is by default the master process.

e The communication routines are programmed using the MPl_send and
MPI_recv routines either in standard or synchronous mode.

11.4. COMMUNICATIONS 493

e There are options to use MPI collective calls instead for some opera-
tions: MPIl_bcast for copy and MPI_allgather for collect operations.

e For exchange operations there is an alternative option to use the
MPI_sendrecv utility routine which combine a send and a receive oper-
ation into one call.

11.4.3 Implementation

The main difficulty in programming MPI communications is to prevent so-
called dead locks, i.e. a send/receive operation cannot terminate because one
of the processes is engaged in another communication which cannot terminate
as well and so on. The problem does not arise for the asymmetric “one-to-all”
and “all-to-one” operations since each process is engaged in either a send or
a receive operation but not both. The problem is more severe for “all-to-all”
and exchange operations. Implementation of these two type of operations is
discussed below.

11.4.3.1 all-to-all operations

Firstly, an order of operations is defined for each process via a 2N, x N,
array. The elements are either -1, 0, 1, 2. Taking the example of N, =4, the
array is defined as follows (with easy extension for a general value of N,):

o 2 2 2
1 0 2 2
1 1 0 2
1 1 1 0
-1 1 1 1
2 -1 1 1
2 2 -1 1
2 2 2 -1

where each column (except the first) is obtained by shifting the previous one
donwwards by 1 position. The first column represents the type and order of
the communications performed by process 0, the second by process 1 and so
on. The numbers present the kind of the operations to be performed:

-1: Dummy operation. Nothing is done.

0: The process “communicates” with itself, the local data are stored di-
rectly into the global array.

494 CHAPTER 11. ASPECTS OF PARALLELLISATION

1: Send operation.
2: Receive operation.

Secondly, the source or destination of each communication needs to be
defined. The process ids are taken from the following vector (of size 2N,):
(0,1,2,3,0,1,2, 3)T. Replacing the one and twos in the previous array by
respectively S and R, and inserting the process ids into each column of the
previous array, all communications can be symbolically presented by the
matrix

0 RO RO RO
S1 0 Rl Rl
S2 S2 0 R2
S3 S3 S3 0
-1 50 S0 SO
R1 -1 S1 51
R2 R2 -1 52
R3 R3 R3 -1

where the first column aplies to process 0, the second column to process 1
and so on. The numbers 0 and -1 have the same meaning as before, S7 means
send to process i and Ri receive from process i. For example, process 2 (third
column) performs the following operations : receive from process 0, receive
from 1, internal storage, send to 3, send to 0, send to 1, nothing, receive
from 3. It can easily be shown that the order of communications, defined
in this way, can never produce a dead lock, since for each send/receive the
destination /source process will always be available to receive/send the data.

11.4.3.2 exchange operations

Consider as example a 4x4 decomposition which is arranged in a chessboard
pattern as shown in Figure [11.7]

Each domain has to communicate with its 8 neighbours. Dummy domains
(with process id MPI_proc_null) are added outside the computational domain
(not shown). Each communication has a specified direction (W, E, S, N,
SW, NE, NW, SE, as shown in Figure . The 8 sends and receives are
organised in 16 steps. The first four deal with W/E communications.

1: Black sends W, white receives E.
2: Black receives E, white sends W.

3: Black sends E, white receives W.

11.4. COMMUNICATIONS 495

Figure 11.7: Communication pattern for exchange operations.

4: Black receives W, white sends E.

5-8: The same now for S/N directions.
9-12: The same now for SW/NE directions.
13-16: The same now for SE/NW directions.

The actual number of communications depends on the sizes of the halo. For
example, an array with halo size (0,2,2,2) has no western halo so that steps
3,4, 11, 12, 13, 14 become unnecessary. There is also an option foreseen in
the exchange call to skip all corner communications (steps 9 to 16).

11.4.3.3 program routines for communications

The following generic communication routines have been implemented in the

code. For a discussion of the FORTRAN syntax see Section [31.17]

collect_vars collect operations
combine_mod combine operations on full model grid arrays
combine_obc combine operations on open boundary arrays

combine_stats ~ combine operations on irregular (stations) arrays
combine_submod combine operations on sub-sections of full model grid arrays
copy_chars copy operation on character data

copy_vars copy operation on numerical data

distribute_mod distribute operation on model grid arrays

exchange_.mod exchange operation on model grid arrays.

496 CHAPTER 11. ASPECTS OF PARALLELLISATION

11.5 Local versus global array indexing

Since the parallel decomposition uses non-shared memory, arrays exist only
on a local basis. In some cases, one needs to store all these local components
into some global array. The question is how to relate a local array element
with the corresponding element in the global array. The answer is so-called
index mapping, which maps local array indices into the corresponding global
ones.

For arrays defined on the model grid, this mapping has a simple form and
follows from the definition of the domain decomposition itself. Assume that
(iloc,jloc) are the local and (iglb,jglb) its corresponding global indices. They
are related by

iglb = iloc + nclloc - 1
jglb = jloc + nrlloc - 1

The solution is less obvious for arrays not indexed by positions on the
model grid. Consider the example shown in Figure [11.8f The domain is
decomposed in 4 sub-domains.

1
1 2
1
3
2
3
1
4
2
2 5
6
4

Figure 11.8: Example of index mapping between global and local arrays.

There are 6 data points in total of which 3 are located in the domain
with process number 1, 2 in domain 2, 1 in domain 3 and none in domain

11.5. LOCAL VERSUS GLOBAL ARRAY INDEXING 497

4. The 3 elements of domain 1 map into elements (2,3,5) of the global array,
the 2 elements of domain 2 into (1,4), the element from domain 3 into global
element 6. No mapping is obviously needed for domain 4. The mapping can
be programmed as follows

INTEGER :: iproc, maxstats, nostatsglb, nostatsloc
INTEGER, DIMENSION(nprocs) :: nostatsprocs
INTEGER, DIMENSION(:,:) :: lstatsprocs

nostatsglb = 6
nostatsprocs = (/3,2,1,0/)
iproc_110: DO iproc = 1,nprocs
IF (idloc.EQ.idprocs(iproc)) THEN
nostatsloc = nostatsprocs(iproc)
ENDIF
ENDDO iproc-110
maxstats = MAXVAL(nostatsprocs)
ALLOCATE (1lstatsprocs(nprocs,maxstats))
lstatsprocs(1,1:3) (/2,3,5/)
lstatsprocs(2,1:2) (/1,4/)
lstatsprocs(3,1) = 6

where nostatsloc, nostatsglb are the local and global number of data points,
nostatsprocs an array with the number of data points per process and Istat-
sprocs the array defining the index mapping. If, for example, the data points
represent stations used for output, the local data must be combined first into
the global array using the index mapping array. The situation is more com-
plex in practice since the number of points per domain are unknown initially.
Usually, these points have corresponding geographical positions which allows
to determine their distribution over the different sub-domains.

The second example is related to the indexing of open boundary locations.
The following definitions are made

nobu number of global U-open boundary points (global)
nobuloc number of local U-open boundary points (local)
westobu(nobu) TRUE. (.FALSE.) for U-open boundary points

at western (eastern) boundaries (global)

iobuloc(nobuloc) local X-index of U-open boundary points on the
local grid (local)

jobuloc(nobuloc) local Y-index of U-open boundary points on the
local grid (local)

498 CHAPTER 11. ASPECTS OF PARALLELLISATION

indexobu(nobuloc) global indexes of local U-boundary points (local)

indexobuprocs(nobu,nprocs) global indexes of local U-boundary points per do-
main (global)

The parameter nobuloc and the last 3 arrays are defined in routine
open_boundary_arrays (file Grid_Arrays.F'90). Consider the following code

iiloc_110: DO iiloc=1,nobuloc
i = iobuloc(iiloc); j = jobuloc(iiloc)
ii = indexobu(iiloc)
IF (westobu(ii)) THEN

ENDIF
ENDDO iiloc_110

The IF statement determines whether a local open boundary points is located
at a western or eastern boundary.

Index mapping is used in the program for local versus global indexing of:
e open boundary arrays
e output arrays of model data on an irregular grid

e the positions of the open boundary points belonging to nested sub-grids

	III Description of the model code
	Aspects of parallellisation
	Basic principles
	Implementation of MPI
	Principles of the parallel code

	Domain decomposition
	Definition
	Local grid indexing system

	Halos
	Communications
	Send and receive in MPI
	Sort of communications
	Implementation
	all-to-all operations
	exchange operations
	program routines for communications

	Local versus global array indexing

