Appendix B

Solutions of the RANS equations

B. 1 Non-equilibrium method

Using the definitions (4.179) and (4.181), the RANS equations (4.178) can be reduced to two linear equations for the stability functions S_{u} and S_{b}. Firstly, the following auxiliary parameters are defined

$$
\begin{align*}
\alpha_{1} & =1-c_{21}-c_{23}+\frac{3}{2} c_{22} \\
\alpha_{2} & =\left(1-c_{21}\right)^{2}+c_{23}\left(4-4 c_{21}+c_{23}\right) \\
\alpha_{3} & =3-c_{21}+2 c_{23}-2 c_{3} \\
\alpha_{4} & =c_{23}\left(3-2 c_{21}+c_{23}-c_{3}\right) \\
\alpha_{5} & =\alpha_{1}-\frac{\alpha_{2}}{c_{1}} \\
\alpha_{6} & =\left(1-c_{21}\right)\left(3-c_{21}+2 c_{23}-2 c_{3}\right)+\alpha_{4} \\
R_{\beta}^{\star} & =R_{\beta}\left(1-c_{3 \beta}\right) \tag{B.1}
\end{align*}
$$

The stability functions are then obtained as solution of

$$
\begin{align*}
& {\left[c_{1}^{2} c_{1 \beta}+\frac{2}{3} c_{1 \beta} \alpha_{2} \alpha_{M}+c_{1}\left(1-c_{3}\right) \alpha_{N}\right] S_{u}} \\
& \quad+\left(1-c_{3}\right)\left[\frac{2}{3} c_{1 \beta}\left(2-2 c_{21}+c_{23}\right)+c_{1}\left(1-c_{21 \beta}\right)\right] \alpha_{N} S_{b}=\frac{2}{3} c_{1} c_{1 \beta} \alpha_{1} \tag{B.2}
\end{align*}
$$

$\left[\frac{2}{3} c_{1 \beta}\left(1-c_{21}+2 c_{23}\right)-c_{22 \beta} c_{1}\right] \alpha_{M} S_{u}+\left[c_{1} c_{1 \beta}^{2}-c_{1} c_{22 \beta}\left(1-c_{21 \beta}\right) \alpha_{M}\right.$

$$
\begin{equation*}
\left.+2 c_{1 \beta}\left(c_{1} R_{\beta}^{\star}+\frac{2}{3}\left(1-c_{3}\right)\right) \alpha_{N}\right] S_{b}=\frac{2}{3} c_{1} c_{1 \beta} \tag{B.3}
\end{equation*}
$$

The solution can be written in the form, given by 4.182). The coefficients $C_{a 1}-C_{a 11}$ take the following values

$$
\begin{align*}
C_{a 1}= & \frac{2 \alpha_{1}}{3 c_{1}} \\
C_{a 2}= & -\frac{2 \alpha_{1}\left(1-c_{21 \beta}\right) c_{22 \beta}}{3 c_{1} c_{1 \beta}^{2}} \\
C_{a 3}= & -\frac{2}{3 c_{1} c_{1 \beta}}\left[\left(1-c_{3}\right)\left(\frac{2\left(c_{23}-c_{22}\right)}{c_{1}}+\frac{1-c_{21 \beta}}{c_{1 \beta}}\right)-2 R_{\beta}^{\star} \alpha_{1}\right] \\
C_{a 4}= & \frac{2}{3 c_{1 \beta}} \\
C_{a 5}= & \frac{2}{3 c_{1} c_{1 \beta}}\left[\frac{2}{3 c_{1}}\left(\alpha_{2}-\alpha_{1}\left(1-c_{21}+2 c_{23}\right)\right)+\frac{c_{22 \beta}}{c_{1 \beta}} \alpha_{1}\right] \\
C_{a 6}= & \frac{2\left(1-c_{3}\right)}{3 c_{1} c_{1 \beta}^{2}} \\
C_{a 7}= & \frac{2 \alpha_{2}}{3 c_{1}^{2}}-\frac{c_{22 \beta}\left(1-c_{21 \beta}\right)}{c_{1 \beta}^{2}} \\
C_{a 8}= & \frac{1}{c_{1 \beta}}\left[\frac{7\left(1-c_{3}\right)}{3 c_{1}}+2 R_{\beta}^{\star}\right] \\
C_{a 9}= & -\frac{2 c_{22 \beta}\left(1-c_{21 \beta}\right) \alpha_{2}}{3 c_{1}^{2} c_{1 \beta}^{2}} \\
C_{a 10}= & \frac{2}{3 c_{1}^{2} c_{1 \beta}}\left\{(1 - c _ { 3 }) \left[\frac{2 c_{23}}{c_{1}}\left(1-c_{21}\right)\right.\right. \\
& \left.\left.+\frac{1}{c_{1 \beta}}\left(c_{22 \beta}\left(2-2 c_{21}+c_{23}\right)-\left(1-c_{21 \beta}\right)\left(1-c_{21}+2 c_{23}\right)\right)\right]+2 R_{\beta}^{\star} \alpha_{2}\right\} \\
C_{a 11}= & \frac{2\left(1-c_{3}\right)}{c_{1} c_{1 \beta}^{2}}\left[\frac{2\left(1-c_{3}\right)}{3 c_{1}}+R_{\beta}^{\star}\right] \tag{B.4}
\end{align*}
$$

B. 2 Quasi-equilibrium method

The governing equations for the algebraic RANS model are given by 4.186) supplemented by the last 7 equations of (4.178). In analogy with the previous
case they can be reduced to the following equations for S_{u} and S_{b}.

$$
\begin{align*}
c_{1}\left[c_{1} c_{1 \beta}+\left(1-c_{3}\right) \alpha_{N}\right] S_{u} & +\left[\frac{2}{3} c_{1 \beta} \alpha_{6}+c_{1}\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)\right] \alpha_{N} S_{b} \\
& =\frac{2}{3} c_{1} c_{1 \beta} \alpha_{5} \tag{B.5}\\
{\left[c_{1} c_{1 \beta}^{2}-c_{1}\left(1-c_{21 \beta}\right) c_{22 \beta} \alpha_{M}\right.} & \left.+\left(2 c_{1} c_{1 \beta} R_{\beta}^{\star}+\frac{2}{3} c_{1 \beta} \alpha_{3}-c_{1} c_{22 \beta}\right) \alpha_{N}\right] S_{b} \\
& =\frac{2}{3} c_{1 \beta}\left(c_{1}-1+c_{21}-2 c_{23}\right)+c_{1} c_{22 \beta} \tag{B.6}
\end{align*}
$$

If $c_{22 \beta}=0$, the solutions can be cast in the form (4.187) where

$$
\begin{align*}
C_{b 1}= & \frac{2 \alpha_{5}}{3 c_{1}} \\
C_{b 2}= & \frac{2}{3 c_{1} c_{1 \beta}}\left[\frac{2}{3 c_{1}}\left(\alpha_{3} \alpha_{5}-\alpha_{6}\right)+\frac{2 \alpha_{6}}{3 c_{1}^{2}}\left(1-c_{21}+2 c_{23}\right)\right. \\
& \left.-\frac{\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)}{c_{1 \beta}}\left(1-\frac{1}{c_{1}}\left(1-c_{21}+2 c_{23}\right)\right)+2 \alpha_{5} R_{\beta}^{\star}\right] \\
C_{b 3}= & \frac{2}{c_{1 \beta}}\left(R_{\beta}^{\star}+\frac{\alpha_{3}}{3 c_{1}}\right) \\
C_{b 4}= & \frac{1-c_{3}}{c_{1} c_{1 \beta}} \\
C_{b 5}= & \frac{2}{3 c_{1 \beta}}\left(1-\frac{1}{c_{1}}\left(1-c_{21}+2 c_{23}\right)\right) \tag{B.7}
\end{align*}
$$

If $c_{22 \beta} \neq 0$ the solutions are given by (4.188)-4.189) with

$$
\begin{aligned}
C_{c 1} & =\frac{2 \alpha_{5}}{3 c_{1}} \\
C_{c 2} & =-\frac{1}{c_{1}}\left[\frac{2 \alpha_{6}}{3 c_{1}}+\frac{\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)}{c_{1 \beta}}\right] \\
C_{c 3} & =\frac{1-c_{3}}{c_{1} c_{1}} \\
C_{c 4} & =-\left[\frac{2 \alpha_{6}}{3 c_{1}^{2}}+\frac{1-c_{21 \beta}}{c_{1 \beta}}\left(\frac{c_{22 \beta}}{c_{1 \beta}}+\frac{1-c_{3}}{c_{1}}\right)\right] \\
C_{c 5} & =-\frac{2}{3 c_{1} c_{1 \beta}}\left[\frac{\alpha_{6}}{c_{1}}\left(2 R_{\beta}^{\star}+\frac{2 \alpha_{3}}{3 c_{1}}-\frac{c_{22 \beta}}{c_{1 \beta}}\right)+\frac{\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)}{c_{1 \beta}}\left(3 R_{\beta}^{\star}+\frac{\alpha_{3}}{c_{1}}\right)\right] \\
C_{c 6} & =\frac{2 \alpha_{5}}{3 c_{1}}-\frac{\left(1-c_{21 \beta}\right) c_{22 \beta}}{c_{1 \beta}^{2}}
\end{aligned}
$$

$$
\begin{align*}
C_{c 7}= & \frac{2}{3 c_{1} c_{1 \beta}}\left[\frac{2}{3}\left(\frac{\alpha_{3} \alpha_{5}+\alpha_{6}}{c_{1}}-\frac{\alpha_{6}\left(1-c_{21}+2 c_{23}\right)}{c_{1}^{2}}\right)\right. \\
& \left.+\frac{\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)}{c_{1 \beta}}\left(1-\frac{1-c_{21}+2 c_{23}}{c_{1}}\right)-\frac{c_{22 \beta}}{c_{1 \beta}}\left(\alpha_{5}-\frac{\alpha_{6}}{c_{1}}\right)+2 \alpha_{5} R_{\beta}^{\star}\right] \\
C_{c 8}= & -\frac{2 \alpha_{5}}{3 c_{1} c_{1 \beta}}\left(\frac{2}{3}-\frac{2}{3 c_{1}}\left(1-c_{21}+2 c_{23}\right)+\frac{c_{22 \beta}}{c_{1 \beta}}\right) \tag{B.8}
\end{align*}
$$

B. 3 Equilibrium method

The coefficients in the quadratic equation 4.195) for κ^{2} are obtained from equations (B.5) -(B.6) and the equilibrium relation $S_{u} \alpha_{M}-S_{b} \alpha_{N}=1$. One has

$$
\begin{align*}
C_{d 1}= & -\frac{2 \alpha_{5}}{3 c_{1}}-\frac{\left(1-c_{21 \beta}\right) c_{22 \beta}}{c_{1 \beta}^{2}} \\
C_{d 2}= & \frac{1}{c_{1 \beta}}\left(\frac{2}{3}+\frac{7}{3 c_{1}}\left(1-c_{3}\right)+2 R_{\beta}^{\star}\right) \\
C_{d 3}= & \frac{2\left(1-c_{21 \beta}\right) c_{22 \beta} \alpha_{5}}{3 c_{1} c_{1 \beta}^{2}} \\
C_{d 4}= & \frac{2}{3 c_{1} c_{1 \beta}}\left[\frac{2}{3 c_{1}}\left(\alpha_{6}-\alpha_{3} \alpha_{5}-\frac{\left(1-c_{21}+2 c_{23}\right) \alpha_{6}}{c_{1}}\right)\right. \\
& +\frac{\left(1-c_{3}\right)\left(1-c_{21 \beta}\right)}{c_{1 \beta}}\left(1-\frac{1-c_{21}+2 c_{23}}{c_{1}}\right)+\frac{c_{22 \beta}}{c_{1 \beta}}\left(\alpha_{1}+\frac{1}{c_{1}}\left(1-c_{3}\right)\left(2-2 c_{21}+c_{23}\right)\right) \\
& \left.-2 \alpha_{5} R_{\beta}^{\star}\right] \\
C_{d 5}= & \frac{1-c_{3}}{c_{1} c_{1 \beta}^{2}}\left(\frac{2}{3}+\frac{4\left(1-c_{3}\right)}{3 c_{1}}+2 R_{\beta}^{\star}\right) \tag{B.9}
\end{align*}
$$

