
Appendix A

Transformed model equations

A.1 Horizontal transformation

The continuity, momentum and scalar transport equations can be rewritten
from Cartesian to orthogonal curvilinear coordinates (ξ1,ξ2) with the aid of
the general tranfsormation rules (e.g. Batchelor, 1979):
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where the subscript h denotes the horizontal component of the associated
vector or operator and h1, h2 are the metric coefficients defined by (4.7).
Substituting the above relations into (4.43)–(4.45) and (4.47) or (4.48) one
obtains
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(A.5)
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The horizontal diffusion operators for momentum are defined by (Pacanowski
& Griffies, 2000)
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A.2 Vertical transformation

A general vertical coordinate is defined through the transformation

(ξ1, ξ2, z, t) −→ (ξ̃1, ξ̃2, s, t̃) (A.10)

with ξ̃i = ξi, t̃ = t and s = f(ξ1, ξ2, z, t) where, as stated in Section 4.1.4.3,
the transformed vertical coordinate s is defined by normalising the σ-coordinate,
using (4.40) such that (A.13) is valid. Spatial and time derivatives are trans-
formed by applying the chain rule
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where the derivatives on the left hand side in the first two relations are taken
along constant z-surfaces and the first ones on the right side along constant
s-surfaces. The following useful relations can be derived from (A.11)–(A.13)
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A new vertical velocity is defined by
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from which (4.72) is obtained.
The continuity equation (A.4) is rewritten in the transformed coordinate

system with the aid of the previous relations
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which becomes identical to (4.60) by letting ξ̃i = ξi and t̃ = t.
The physical vertical current is given by

w =
dz

dt
=
∂z

∂t̃
+

u

h1

∂z

∂ξ̃1
+

v

h2

∂z

∂ξ̃2
+
ω

h3

∂z

∂s

=
∂z

∂t̃
+

u

h1

∂z

∂ξ̃1
+

v

h2

∂z

∂ξ̃2
+ ω (A.21)

Equation (4.73) is recovered by adding (A.21) and z times (A.20)
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The total derivative of a quantity ψ (velocity component or scalar) transforms
according to
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by virtue of (A.20).
The horizontal gradient of a vertically independent quantity obviously

does not change. For a 3-D quantity one has
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from which (4.74) is obtained with ψ = q.
Applying the previous rule for the horizontal diffusion terms in the mo-

mentum and scalar transport equations one recovers the definitions (4.67),
(4.68), (4.77) and (4.78) by making the assumption that diffusion takes place
along constant s-surfaces.
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