Appendix A

Transformed model equations

A. 1 Horizontal transformation

The continuity, momentum and scalar transport equations can be rewritten from Cartesian to orthogonal curvilinear coordinates $\left(\xi_{1}, \xi_{2}\right)$ with the aid of the general tranfsormation rules (e.g. Batchelor, 1979):

$$
\begin{gather*}
\nabla_{h}=\left(\frac{1}{h_{1}} \frac{\partial}{\partial \xi_{1}}, \frac{1}{h_{2}} \frac{\partial}{\partial \xi_{2}}\right) \tag{A.1}\\
\nabla_{h} \cdot \mathbf{F}_{h}=\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} F_{1}\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} F_{2}\right)\right] \tag{A.2}\\
\mathbf{F}_{h} \cdot \nabla_{h} \mathbf{F}_{h}=\left[\mathbf{F}_{h} \cdot \nabla F_{1}+\frac{F_{2}}{h_{1} h_{2}}\left(F_{1} \frac{\partial h_{1}}{\partial \xi_{2}}-F_{2} \frac{\partial h_{2}}{\partial \xi_{1}}\right),\right. \\
\left.\mathbf{F}_{h} \cdot \nabla F_{2}+\frac{F_{1}}{h_{1} h_{2}}\left(F_{2} \frac{\partial h_{2}}{\partial \xi_{1}}-F_{1} \frac{\partial h_{1}}{\partial \xi_{2}}\right)\right] \tag{A.3}
\end{gather*}
$$

where the subscript h denotes the horizontal component of the associated vector or operator and h_{1}, h_{2} are the metric coefficients defined by (4.7). Substituting the above relations into (4.43)-(4.45) and (4.47) or 4.48) one obtains

$$
\begin{gather*}
\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} u\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} v\right)\right]+\frac{\partial w}{\partial z}=0 \tag{A.4}\\
\frac{\partial u}{\partial t}+\frac{u}{h_{1}} \frac{\partial u}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial u}{\partial \xi_{2}}+w \frac{\partial u}{\partial z}+\frac{v}{h_{1} h_{2}}\left(u \frac{\partial h_{1}}{\partial \xi_{2}}-v \frac{\partial h_{2}}{\partial \xi_{1}}\right)-2 \Omega v \sin \phi \\
=-\frac{g}{h_{1}} \frac{\partial \zeta}{\partial \xi_{1}}-\frac{1}{\rho_{o} h_{1}} \frac{\partial P_{a}}{\partial \xi_{1}}-\frac{1}{h_{1}} \frac{\partial q}{\partial \xi_{1}}+F_{1}^{t}+\frac{\partial}{\partial z}\left(\nu_{T} \frac{\partial u}{\partial z}\right)
\end{gather*}
$$

$$
\begin{equation*}
+\mathcal{D}_{m h 1}^{*}\left(\tau_{11}\right)+\mathcal{D}_{m h 2}^{*}\left(\tau_{12}\right) \tag{A.5}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial v}{\partial t} & +\frac{u}{h_{1}} \frac{\partial v}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial v}{\partial \xi_{2}}+w \frac{\partial v}{\partial z}+\frac{u}{h_{1} h_{2}}\left(v \frac{\partial h_{2}}{\partial \xi_{1}}-u \frac{\partial h_{1}}{\partial \xi_{2}}\right)+2 \Omega u \sin \phi \\
& =-\frac{g}{h_{1}} \frac{\partial \zeta}{\partial \xi_{2}}-\frac{1}{\rho_{o} h_{2}} \frac{\partial P_{a}}{\partial \xi_{2}}-\frac{1}{h_{2}} \frac{\partial q}{\partial \xi_{2}}+F_{2}^{t}+\frac{\partial}{\partial z}\left(\nu_{T} \frac{\partial v}{\partial z}\right) \\
& +\mathcal{D}_{m h 1}^{*}\left(\tau_{21}\right)+\mathcal{D}_{m h 2}^{*}\left(\tau_{22}\right) \tag{A.6}
\end{align*}
$$

$$
\begin{array}{r}
\frac{\partial \psi}{\partial t}+\frac{u}{h_{1}} \frac{\partial \psi}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial \psi}{\partial \xi_{2}}+w \frac{\partial \psi}{\partial z}=\mathcal{S}(\psi)+\frac{\partial}{\partial z}\left(\lambda_{T} \frac{\partial \psi}{\partial z}\right) \tag{A.7}\\
+\frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial \xi_{1}}\left(\lambda_{H} \frac{h_{2}}{h_{1}} \frac{\partial \psi}{\partial \xi_{1}}\right)+\frac{\partial}{\partial \xi_{2}}\left(\lambda_{H} \frac{h_{1}}{h_{2}} \frac{\partial \psi}{\partial \xi_{2}}\right)\right]
\end{array}
$$

The horizontal diffusion operators for momentum are defined by (Pacanowski \& Griffies, 2000)

$$
\begin{align*}
\mathcal{D}_{m h 1}^{*}(F) & =\frac{1}{h_{1} h_{2}^{2}} \frac{\partial}{\partial \xi_{1}}\left(h_{2}^{2} F\right) \tag{A.8}\\
\mathcal{D}_{m h 2}^{*}(F) & =\frac{1}{h_{1}^{2} h_{2}} \frac{\partial}{\partial \xi_{2}}\left(h_{1}^{2} F\right) \tag{A.9}
\end{align*}
$$

A. 2 Vertical transformation

A general vertical coordinate is defined through the transformation

$$
\begin{equation*}
\left(\xi_{1}, \xi_{2}, z, t\right) \longrightarrow\left(\tilde{\xi}_{1}, \tilde{\xi}_{2}, s, \tilde{t}\right) \tag{A.10}
\end{equation*}
$$

with $\tilde{\xi}_{i}=\xi_{i}, \tilde{t}=t$ and $s=f\left(\xi_{1}, \xi_{2}, z, t\right)$ where, as stated in Section 4.1.4.3. the transformed vertical coordinate s is defined by normalising the σ-coordinate, using (4.40) such that (A.13) is valid. Spatial and time derivatives are transformed by applying the chain rule

$$
\begin{align*}
\frac{\partial}{\partial t} & =\frac{\partial}{\partial \tilde{t}}+\frac{\partial s}{\partial t} \frac{\partial}{\partial s} \tag{A.11}\\
\frac{\partial}{\partial \xi_{i}} & =\frac{\partial}{\partial \tilde{\xi}_{i}}+\frac{\partial s}{\partial \xi_{i}} \frac{\partial}{\partial s} \tag{A.12}\\
\frac{\partial}{\partial z} & =\frac{1}{h_{3}} \frac{\partial}{\partial s} \tag{A.13}
\end{align*}
$$

where the derivatives on the left hand side in the first two relations are taken along constant z-surfaces and the first ones on the right side along constant s-surfaces. The following useful relations can be derived from (A.11)-(A.13)

$$
\begin{gather*}
\frac{\partial s}{\partial z}=\frac{1}{h_{3}}, \quad \frac{\partial z}{\partial s}=h_{3} \tag{A.14}\\
\frac{\partial z}{\partial \tilde{\xi}_{i}}+h_{3} \frac{\partial s}{\partial \xi_{i}}=0 \tag{A.15}\\
\frac{\partial h_{3}}{\partial \tilde{t}}+\frac{\partial s}{\partial t} \frac{\partial h_{3}}{\partial s}=0 \tag{A.16}\\
\frac{\partial h_{3}}{\partial \tilde{\xi}_{i}}=\frac{\partial}{\partial \tilde{\xi}_{i}}\left(\frac{\partial z}{\partial s}\right)=\frac{\partial}{\partial s}\left(\frac{\partial z}{\partial \tilde{\xi}_{i}}\right)=-\frac{\partial}{\partial s}\left(h_{3} \frac{\partial s}{\partial \xi_{i}}\right) \tag{A.17}\\
\frac{\partial z}{\partial \tilde{t}}=-\frac{\partial s}{\partial t} \frac{\partial z}{\partial s}=-h_{3} \frac{\partial s}{\partial t} \tag{A.18}
\end{gather*}
$$

A new vertical velocity is defined by

$$
\begin{align*}
\omega & =h_{3} \frac{d s}{d t} \\
& =h_{3}\left(\frac{\partial s}{\partial t}+\frac{u}{h_{1}} \frac{\partial s}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial s}{\partial \xi_{2}}+w \frac{\partial s}{\partial z}\right) \\
& =h_{3}\left(\frac{\partial s}{\partial t}+\frac{u}{h_{1}} \frac{\partial s}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial s}{\partial \xi_{2}}\right)+w \tag{A.19}
\end{align*}
$$

from which (4.72) is obtained.
The continuity equation (A.4) is rewritten in the transformed coordinate system with the aid of the previous relations

$$
\begin{aligned}
0= & \frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} u\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} v\right)\right]+\frac{\partial w}{\partial z} \\
= & \frac{1}{h_{1} h_{2}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} v\right)+\frac{\partial s}{\partial \xi_{1}} \frac{\partial}{\partial s}\left(u h_{2}\right)+\frac{\partial s}{\partial \xi_{2}} \frac{\partial}{\partial s}\left(v h_{1}\right)\right]+\frac{1}{h_{3}} \frac{\partial w}{\partial s} \\
= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)+h_{3} \frac{\partial s}{\partial \xi_{1}} \frac{\partial}{\partial s}\left(u h_{2}\right)-u h_{2} \frac{\partial h_{3}}{\partial \tilde{\xi}_{1}}\right. \\
& \left.+h_{3} \frac{\partial s}{\partial \xi_{2}} \frac{\partial}{\partial s}\left(v h_{1}\right)-v h_{1} \frac{\partial h_{3}}{\partial \tilde{\xi}_{2}}\right]+\frac{1}{h_{3}} \frac{\partial w}{\partial s} \\
= & \frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)+h_{3} \frac{\partial s}{\partial \xi_{1}} \frac{\partial}{\partial s}\left(u h_{2}\right)+u h_{2} \frac{\partial}{\partial s}\left(h_{3} \frac{\partial s}{\partial \xi_{1}}\right)\right. \\
& \left.+h_{3} \frac{\partial s}{\partial \xi_{2}} \frac{\partial}{\partial s}\left(v h_{1}\right)+v h_{1} \frac{\partial}{\partial s}\left(h_{3} \frac{\partial s}{\partial \xi_{2}}\right)\right]+\frac{1}{h_{3}} \frac{\partial w}{\partial s}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)+\frac{\partial}{\partial s}\left(h_{2} h_{3} u \frac{\partial s}{\partial \xi_{1}}+h_{1} h_{3} v \frac{\partial s}{\partial \xi_{2}}\right)\right]+\frac{1}{h_{3}} \frac{\partial w}{\partial s} \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right]+\frac{1}{h_{3}} \frac{\partial}{\partial s}\left[w+\frac{h_{3}}{h_{1}} u \frac{\partial s}{\partial \xi_{1}}+\frac{h_{3}}{h_{2}} v \frac{\partial s}{\partial \xi_{2}}\right] \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right]+\frac{1}{h_{3}} \frac{\partial}{\partial s}\left(\omega-h_{3} \frac{\partial s}{\partial t}\right) \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right]+\frac{1}{h_{3}} \frac{\partial \omega}{\partial s}-\frac{1}{h_{3}} \frac{\partial h_{3}}{\partial s} \frac{\partial s}{\partial t}-\frac{\partial}{\partial s}\left(\frac{\partial s}{\partial t}\right) \\
& =\frac{1}{h_{3}} \frac{\partial h_{3}}{\partial \tilde{t}}+\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right]+\frac{1}{h_{3}} \frac{\partial \omega}{\partial s} \tag{A.20}
\end{align*}
$$

which becomes identical to 4.60 by letting $\tilde{\xi}_{i}=\xi_{i}$ and $\tilde{t}=t$.
The physical vertical current is given by

$$
\begin{align*}
w & =\frac{d z}{d t}=\frac{\partial z}{\partial \tilde{t}}+\frac{u}{h_{1}} \frac{\partial z}{\partial \tilde{\xi}_{1}}+\frac{v}{h_{2}} \frac{\partial z}{\partial \tilde{\xi}_{2}}+\frac{\omega}{h_{3}} \frac{\partial z}{\partial s} \\
& =\frac{\partial z}{\partial \tilde{t}}+\frac{u}{h_{1}} \frac{\partial z}{\partial \tilde{\xi}_{1}}+\frac{v}{h_{2}} \frac{\partial z}{\partial \tilde{\xi}_{2}}+\omega \tag{A.21}
\end{align*}
$$

Equation (4.73) is recovered by adding (A.21) and z times A.20

$$
\begin{align*}
w= & \frac{\partial z}{\partial \tilde{t}}+\frac{u}{h_{1}} \frac{\partial z}{\partial \tilde{\xi}_{1}}+\frac{v}{h_{2}} \frac{\partial z}{\partial \tilde{\xi}_{2}}+\omega \\
& +\frac{z}{h_{3}}\left[\frac{1}{h_{1} h_{2}}\left(\frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right)+\frac{\partial \omega}{\partial s}+\frac{\partial h_{3}}{\partial \tilde{t}}\right] \\
= & \frac{1}{h_{3}}\left[\omega \frac{\partial z}{\partial s}+z \frac{\partial \omega}{\partial s}+h_{3} \frac{\partial z}{\partial \tilde{t}}+z \frac{\partial h_{3}}{\partial \tilde{t}}+\frac{u h_{3}}{h_{1}} \frac{\partial z}{\partial \tilde{\xi}_{1}}+\frac{z}{h_{1} h_{2}} \frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u\right)\right. \\
& \left.+\frac{v h_{3}}{h_{2}} \frac{\partial z}{\partial \tilde{\xi}_{2}}+\frac{z}{h_{1} h_{2}} \frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v\right)\right] \\
= & \frac{1}{h_{3}}\left[\frac{\partial}{\partial \tilde{t}}\left(h_{3} z\right)+\frac{1}{h_{1} h_{2}} \frac{\partial}{\partial \tilde{\xi}_{1}}\left(h_{2} h_{3} u z\right)+\frac{1}{h_{1} h_{2}} \frac{\partial}{\partial \tilde{\xi}_{2}}\left(h_{1} h_{3} v z\right)+\frac{\partial}{\partial s}(\omega z)\right] \tag{A.22}
\end{align*}
$$

The total derivative of a quantity ψ (velocity component or scalar) transforms according to

$$
\begin{aligned}
\frac{d \psi}{d t} & =\frac{\partial \psi}{\partial t}+\frac{u}{h_{1}} \frac{\partial \psi}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial \psi}{\partial \xi_{2}}+w \frac{\partial \psi}{\partial z} \\
& =\frac{\partial \psi}{\partial \tilde{t}}+\frac{u}{h_{1}} \frac{\partial \psi}{\partial \tilde{\xi}_{1}}+\frac{v}{h_{2}} \frac{\partial \psi}{\partial \tilde{\xi}_{2}}+\frac{\partial \psi}{\partial s}\left(\frac{\partial s}{\partial t}+\frac{u}{h_{1}} \frac{\partial s}{\partial \xi_{1}}+\frac{v}{h_{2}} \frac{\partial s}{\partial \xi_{2}}+\frac{w}{h_{3}}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \frac{\partial \psi}{\partial \tilde{t}}+\frac{u}{h_{1}} \frac{\partial \psi}{\partial \tilde{\xi}_{1}}+\frac{v}{h_{2}} \frac{\partial \psi}{\partial \tilde{\xi}_{2}}+\frac{\omega}{h_{3}} \frac{\partial \psi}{\partial s} \\
= & \frac{1}{h_{3}} \frac{\partial}{\partial \tilde{t}}\left(h_{3} \psi\right)+\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} h_{3} u \psi\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} h_{3} v \psi\right)\right]+\frac{1}{h_{3}} \frac{\partial}{\partial s}(\psi \omega) \\
& -\frac{\psi}{h_{3}} \frac{\partial h_{3}}{\partial \tilde{t}}-\frac{\psi}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} h_{3} u\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} h_{3} v\right)\right]-\frac{\psi}{h_{3}} \frac{\partial \omega}{\partial s} \\
= & \frac{1}{h_{3}} \frac{\partial}{\partial \tilde{t}}\left(h_{3} \psi\right)+\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial \xi_{1}}\left(h_{2} h_{3} u \psi\right)+\frac{\partial}{\partial \xi_{2}}\left(h_{1} h_{3} v \psi\right)\right]+\frac{1}{h_{3}} \frac{\partial}{\partial s}(\psi \omega) \tag{A.23}
\end{align*}
$$

by virtue of A.20).
The horizontal gradient of a vertically independent quantity obviously does not change. For a 3-D quantity one has

$$
\begin{align*}
\frac{1}{h_{i}} \frac{\partial \psi}{\partial \xi_{i}} & =\frac{1}{h_{i}}\left[\frac{\partial \psi}{\partial \tilde{\xi}_{i}}+\frac{\partial s}{\partial \xi_{i}} \frac{\partial \psi}{\partial s}\right] \\
& =\frac{1}{h_{i}}\left[\frac{1}{h_{3}} \frac{\partial}{\partial \tilde{\xi}_{i}}\left(h_{3} \psi\right)-\frac{\psi}{h_{3}} \frac{\partial h_{3}}{\partial \tilde{\xi}_{i}}+\frac{\partial s}{\partial \xi_{i}} \frac{\partial \psi}{\partial s}\right] \\
& =\frac{1}{h_{i}}\left[\frac{1}{h_{3}} \frac{\partial}{\partial \tilde{\xi}_{i}}\left(h_{3} \psi\right)+\frac{\psi}{h_{3}} \frac{\partial}{\partial s}\left(h_{3} \frac{\partial s}{\partial \xi_{i}}\right)+\frac{\partial s}{\partial \xi_{i}} \frac{\partial \psi}{\partial s}\right] \\
& =\frac{1}{h_{i}}\left[\frac{1}{h_{3}} \frac{\partial}{\partial \tilde{\xi}_{i}}\left(h_{3} \psi\right)+\frac{1}{h_{3}} \frac{\partial}{\partial s}\left(h_{3} \psi \frac{\partial s}{\partial \xi_{i}}\right)\right] \\
& =\frac{1}{h_{i} h_{3}}\left[\frac{\partial}{\partial \tilde{\xi}_{i}}\left(h_{3} \psi\right)-\frac{\partial}{\partial s}\left(\psi \frac{\partial z}{\partial \tilde{\xi}_{i}}\right)\right] \tag{A.24}
\end{align*}
$$

from which (4.74) is obtained with $\psi=q$.
Applying the previous rule for the horizontal diffusion terms in the momentum and scalar transport equations one recovers the definitions (4.67), (4.68), 4.77) and 4.78) by making the assumption that diffusion takes place along constant s-surfaces.

